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I. INTRODUCTION 

The subject of neutron thermaiization concerns the 

manner in which the "neutron gas" comes into thermal equi­

librium (if it ever doesl) with the medium which contains 

it. Its analysis shows a nice interplay between theories 

of neutron transport and theories of the solid and liquid 

state, and is also reminiscent of the classical kinetic 

theory of gases. More precisely, it resembles the "foreign-

gas" problem, where a small number of gas molecules is intro­

duced into a large collection of molecules already in equi­

librium at some temperature. 

The thermaiization problem might be compared with a 

particularly simple, linearized version of the kinetic theory 

of gases, were it not for the feature of chemical binding. 

In all but the simplest models, the atoms of the moderator 

interact with one another and the complicated motions which 

result produce a complex scattering pattern in the laboratory 

system. 

Recently, the subject has assumed various and interesting 

fields of neutron physics. One of these, which received ex­

tensive theoretical and experimental considerations, is the 

field dealing with the integral part of the thermaiization 

problem and which is the main interest of this thesis. In 

the integral experiments the concentration is on the temporal 
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change of the energy-integrated flux rather than on the 

details of neutron spectra. 

The most eminent technique for these experiments is 

the pulsing technique introduced by Von Dardel (54), The 

theory behind the method is summarized in a consideration 

of a burst of fast neutrons injected in the moderator. When 

a sufficiently long time has elapsed after the initiation of 

the pulse the flux decays as exp(-\t) where x is the decay 

constant. A semi-log, plot of the flux, obtained by a "l/V 

detector, versus time should give a straight line with a 

slope equal to -X. 

von Dardel and Sjostrand (55) found that X could be ex­

pressed in terms of power series of the square of the geo-

2 
metric buckling, 

V 

X = ct + D_B^ + CB^ + --- - -
o g g 

where a is the decay constant which would be observed in an 

infinite medium, is the diffusion coefficient and C is 

the diffusion cooling constant that describes the cooling 

phenomenon due to the preferential leakage of the high-energy 

neutrons from a finite medium. Nelkin (38) has obtained these 

coefficients by a variational approach. He used the "neutron 

temperature" as a variational parameter. Singwi (48), and 

Purohit (43), applying the diffusion approximation, have de­

termined and C with the help of the Laguerre expansion. 
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The experimental values of a and were obtained with 

good accuracy and the values measured by different experi­

menters are in agreement with each others and with the sim­

plest model of diffusion theory. On the other hand, the 

data reported for C showed large discrepancies. 

All pulse data available today have been obtained from 

multi-dimensional systems whose methods of analysis are, un­

doubtedly, complicated. To help in resolving the inconsist­

encies of the experimental values of the diffusion cooling 

constant, further work with spherical geometries is needed. 

This need has been emphasized by Gelbard ̂  (24) because 

this shape would be amendable to theoretical interpretation 

and might yield more information on the thermalization param­

eters. 

The purpose of this thesis is to study the feasibility 

of pulse experiments in spherical geometry. The study is 

based on both theoretical and experimental investigations. 

The former is treated in Chapter II while the latter is dealt 

with in Chapter V. 

The theoretical model of the present work is the P^-L^ 

approximation developed in section II-A. In the next section 

the eigenvalue problem is defined and the behavior of the de­

cay constants, as functions of the space eigenvalues, is stud® 

led. This study is felt to be of interest for two reasons. 

First, Travelli and Calame (52) pointed out that the plot of 
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the fundamental time-eigenvalue, as obtained by a 4-group 

approximation, versus the space eigenvalue gave a curve with 

a positive curvature at the origin in disagreement with the 

experimental results. The study is aimed to clarify the na­

ture of this contradiction. Second, some understanding of 

the eigenvalue spectrum is needed to test the feasibility of 

the commonly used expansion of the decay constant in power 

series of the geometric buckling. The results inferred from 

this study are used in verifying the treatment in section II-C 

where the various diffusion parameters are derived. 

In section II-D the space-energy dependence of the eigen-

functions is examined together with the concept of a unique 

buckling. Equations for the computation of the diffusion-

cooled neutron spectra for the asymptotic and the transient 

distributions are developed. These equations are made use 

of, in section II-E, to calculate the spectrum-weighted aver­

age energy and effective buckling for a sphere. 

The space-dependence of the extrapolation distances for 

a spherical geometry are compared with those of an "equiva­

lent slab" in section II-F. The Marshak's boundary condition 

is used for the system-vacuum interface. 

In the experimental part two different investigations 

of the die-away experiments are described. Section V-A deals 

with the determination of the diffusion parameters. The ex­

trapolation distances for five spherical geometries are de­

termined in section V-B. 
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II. GENERAL THEORY 

A. The P^-L^ Equation in Spherical Geometry 

1. The Pi equation 

The source-free integro-differential form of the Boltz-

mann transport equation describing the time, space, energy 

and angular dependence of neutron flux in a sphere of homo­

geneous materials is 

1 3o(r,E,u,t) 3(s(r,E,p,^t) (1 - ôû(r,E,^,t) 
V ôt ^ ôr r ôjx 

p i f  '  
+ ZT*(r;E;p,t) = 2r Z=(Pn'E'^E)*(r,E',^',t)d^'dE 

J -1 J E' 
( 2 . 1 )  

where 

0 (r,E,p. ,t) = The angular flux 

= The scattering kernel 

= )E'-^E) 

^ = Direction cosine 

Tj = Total macroscopic cross section 

The solution of 2.1 should be made to satisfy the usual 

boundary conditions of transport theory, namely; 

a. The neutron flux must be finite and non-negative 

in all regions of the medium since the medium con­

tains no sources. 

b. At the outer boundary, which faces a vacuum, there 

must be no neutrons returning to the medium from 
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the vacuum. 

Since 4>(rjEj^,t) is time dependent, an initial condi­

tion must also be stated to solve the problem completely. 

However this study is concerned only with the relative be­

havior of the angular flux as a function of the system size 

and some reference time; hence the complete solution of the 

problem is not required. 

The angular dimension of 2.1 may be removed in the usual 

manner by expanding the angular flux and the scattering ker­

nel in Legendre polynomials 

*(r,E,^,t) = Z i (r,E,t)P (|x) (2.2.a) 
m Air 

° I Zsm<E'-E)Pm(^o) {2.2.b) 

This yields, after the insertion of the angular expansion, 

making use of the addition theorem of Legendre polynomials, 

multiplying through by P^(^) and integrating over -l^£l: 

(n + 1)[~ + I + i(r)E,t) + n[~ - - i(r,E,t) 

+ (2n + DCfZy + ̂  •^)®^(r,E,t) - S^«^(r,E• ,t)] = 0 (2.3) 

where n = 0,1,2,...N for an order angular approximation. 
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r 00 

n n 
S.$n(r,E',t) = _ Sg^(E'-^E)^^(r,E',t)dE' (2.4) 

E'=0 

and 

*_^(r,E;t) = 0 

By direct substitution, it can be shown that the solution 

of 2.3 is of the form 

$n(r,E,t) - + G^( B,E,x )n^( Brle"^ ̂ (2.5) 

where j^(Br) and n^(Br) are the n^^ order spherical Bessel 

functions of first and second type respectively. The param­

eter B is a space eigenvalue and \ is a time eigenvalue. 

The asymptotic limits for spherical Bessel functions with 

small arguments are: 

jn(Br) —Pô " 
(Br)" 

1'3'5°••(2n + 1) 

Since n^(Br) contains the argument in the denominator 

of its limit; it is seen that it would violate the first 

boundary condition, while does not. Therefore the arbi­

trary constant G^(Br) must be set identically equal to zero 

and 4 (r,E,t) becomes; 
n 

*n(r,E,t) = Fj^(B,E,X)j^(Br)e"^^ (2.6) 
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The substitution of 0^(r,E|t) as given by 2.6 into 2.3 

gives a set of N + 1 homogeneous coupled equations relating 

(n+l)BF^^^(B,E,\) - nBF^_j, {B,E,\) + (2n+l)[(S^ - ̂ )F^(B,£,\} 

In the approximation, this set takes the form 

BF^(B,E,\) + [(Zy - ̂ )Fq(B,E,X) - SQFQ(B,E',X)] = 0 (2.8.a) 

-BFq(B,E,\) + 3[(%T - ̂ )Fj^(B,E,\) - Sj^F^(B,E',X)] = 0 (2.8.b) 

The component of the scattering kernel can be ap­

proximated by 

where 6(E'-E) is the Dirac delta function and jl is the average 

of the cosine of the scattering angle. 

With the above approximation the integral S^F^ becomes 

the F^'s for an order approximation: 

.S^F^(B,E',X)] = 0 (2.7) 

,I(E)2g^(E'-^E)ô(E'-E) 

S^F^(B,E*,\) r S5^(E)^:F^(B,E,X) (2.9) 

The substitution of this expression into 2.8 gives 

FJ^(B,E,\) = BFq(B,E,\)/3(5:^J^ - ( 2 . 1 0 . a )  



www.manaraa.com

9 

[B2/3(ZTR - ̂ ) + - ̂ ]Fq(B,E,X) = SqFQ(B,E'A) (2.10.b) 

where 

Zy%(E) = 2^(E) + Zgo(E)[l - f(E)] (2.11) 

The set 2.10 is closely related to that obtained by 

Nelkin (39) and Vertes (53) for an infinite slab using the 

Fourier transform. However, the above formalism has an ad­

vantage over Nelkin*s; namely, the Fourier transform implies 

an infinite medium. By finding the set of eigenvalues of 

2.10: 

BQJBi, B^ 

one can write down the total solution of 2.8 which will satisfy 

the boundary conditions of a finite sample. 

2. Limiting value of the decay constant 

According to Corngold and others (11-14) the discrete 

eigenvalues of the decay constant, are limited by 

Mim. " (VZg,in)min. 2.12) 

where S_ . is the macroscopic inelastic scattering cross 
S J IN # 

section for neutrons of speed V. The minimum theoretical 

value of _ occurs for V 0, and for water it is close 
s,in. 

to 300,000 sec.**^« As Corngold and Michael (14) pointed out, 

the experimental values of the fundamental decay constant 
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exceed this limit in many cases. This means that if the 

experimental points are correct, they stand in direct con­

tradiction to rather direct consequences of the Boltzmann 

equation. It is perhaps more reasonable to look at the 

problem from a different point of view. 

In 2.10.b, Fq( B , E , X) is recognized as the energy com­

ponent of the scalar flux at a given B and For this com­

ponent to be real and finite the following should hold. 

\<[VB2/3(2^j^ - + V(Zg + = Xiim. (2.13) 

where corresponds to the energy at which the quantities 

in brackets are at a minimum. Equation 2.13 explains why the 

experimental decay constant exceeds Corngold's limit in some 

cases. In case of water, however, both the absorption and 

the transport cross section behave like 1/V for small V and 

2.13 would reduce to Corngold's limit as V^O provided that 

(V2 )p is recognized as (VS^ . )p . 
s Cq s,in. 

From the foregoing one concludes that X^im ® sepa­

rating point between two types of spectra; 

a. A discrete set of eigenvalues and a corresponding 

discrete spectrum of eigenfunctions in the range 

b. A continuum of eigenvalues in the range 

^>^lim. 
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The corresponding eigenfunctions are given by 

S_.(E-UE)Fo(B,E',X)dE' 
^0<B.EA) = P[ . Z, - X) : 

2 
+ g(\)ô(w - Zy + r— (2.14) 

^ ' 3<^TR -

where P implies the principal value of the integral when the 

denominator appears as the integrand. The delta functions 

give the contribution of singularities other than the poles. 

By the principle of superposition, the solution of the 

equation becomes 

M \ + r" \+ 
•^(r,E,t) = jn(Br)[Z F^^(B,E,)e + Fj^(B,E,\)e"^^dX] 

i=0 
^lim. 

;n = 1,2 (2.15) 

where M stands for the number of the discrete eigenvalues 

and the integral gives the contribution of the continuum. 

Only for a proton gas case does there exist a satisfac­

tory discussion of the character of the time eigenvalues as­

sociated with the energy modes, as given by Corngold £t al. 

( 1 4 ) .  

According to these authors the number of discrete eigen­

values between zero and is infinite for an infinite 

medium. Shapiro (47) has obtained extensive numerical results 
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for the existence and convergence of discrete eigenvalues 

for the monatomic gas model. Numerical results for the 

eigenvalues of the bound proton model have been obtained by 

Ohanian and Daitch (41) using the diffusion approximation. 

The quoted paper indicated that the first eigenvalue always 

exists for a finite medium. There are also strong indica­

tions that there is always at least a second eigenvalue even 

though it may lie close to the limiting decay constant. Re­

cently the thermal neutron space-time eigenvalue spectrum of 

the multi-group approximations were investigated numeri­

cally by Travelli et (52), for a modified form of Rad-

kowsky kernel. Both discrete and continuous eigenvalues were 

found. 

3. Expansion of energy eioenfunctions in orthogonal poly­

nomials 

Expansion of F^(B,E} in a complete set of orthogonal 

polynomials allows the solution of the eigenvalue problem. 

The choice of these polynomials is arbitrary. The Laguerre 

polynomials have been used widely, as they are the exact ei-

genfunctions of the Wilkin's heavy gas scattering operator. 

Let 

F (B,E) = S M(E)F k(B)L(^)(E), (2.16) 
" k=0 ^ 

= S^Q/CyÈ" (1/V absorber) (2.17) 
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Stpj(E) = 2jp^^/i/e" (l/V transport cross section) (2.18) 

and 

V = yjl (2.19) 

where E is a dimensionless energy variable expressed in units 

of KT, 

M(E) = Maxwellian neutron distribution 

= E e"^ (2.20) 

L j^^^^(E) = Associated Laguerre polynomials of first 

order 

(k+D^^S^^ pi(l I p^:(k - 1)! (2.21) 

ZgQ = Absorption cross section at room temperature 

= Transport cross section at room temperature 

= Neutron speed at room temperature 

= 2.2 X lO^cm/sec. 

By rewriting the scattering cross section in the inte­

gral form 

Z _ _ ( E )  = Z (E'^E)dE' (2.22) 
so J Q so 

and substituting 2.16 through 2.22 into 2.10, one gets 

r^ûC(-Vo/Ë B^/3(VTRO - - Zao))W(E)L(l)(E) 
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+ J^(L^^J|(E')M(E')S5O(E!-^E) - L^^^(E)M(E)Sg^(E E'))CJE']FQ^(B) 

= 0 (2.23.a) 

Z M{E)(F^^(B) - VQBFok(B)/3(VQZy%o " ?^) )i-^^jJ(E) = 0 
k~0 

(2.23.b) 

According to the detailed balance theorem of statistical 

mechanics, 

M(E')SgQ(E'-E) = Sg^(E')M(E')H(E'-^) 

= 2gQ(E)M(E)H(E->E') (2.24) 

where H(E^E)dE is the probability that a neutron suffering 

a scattering collision at E' shall have an energy E in dE. 

By expanding 

L ( 1 ) ( E ' )  =  L ( I ) ( E )  +  Z  D P L ' ^ ^ ( E )  ( E -  -  E F  
^ * P=1 dE? P! 

and using the above results, the scattering terms can be ex­

pressed as a sum of energy transfer moments: 

j^[L(l)(E')M(E')Zgg(E'^%) - L(l^(E)M(E)ZgQ(E^S')]dE' 

= 2 ^ ÉÎKLILLEL m( E ) 2  ( E )Ap( E )  •  ( 2 . 2 5 . A )  
P=1 ° dE 
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A p(E) = J"'(E' - E)^H(E'-*E)dE' (2.25b) 

= energy transfer moment 

By substituting 2.25 into 2.23, multiplying through by 

L^^|(E) and integrating over E, one gets 

I gftikBZ/S + (K/V^)Wik + = 0 (2.26.a) 

F^^(B) = (2.26.b) 

where 

•^ik = M(E)L(l)(E)L(l2(E)/(VgZtro " K)]dE 

= VoVik/(VoZtro " K)' (Z'Z?) 

^tro ~ ̂ TRo "" ^ao 

= Transport cross section for zero absorption 

=Sg^(l--) (2.28) 

^ik (1//1 )M(E)L^^!(E)L^^^(E)d£ (2.29) 
0 

K = k " Vo^ao (2-30) 
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^ik = % FT [ dE 1 M{E)L^-^iJ(E)5:_A (E)] (2.31) 
0 dET K  s o  f  

Some values for and v^j^ are listed in Table 2.1 and 

2.2 respectively. 

Equation 2.26 is the P^-L^ equation in spherical geom­

etry. For the approximation it reduces to 

(toofiVs - KWoo/V^)Fo°(B) + = 0 

(2.32.a) 

- Kwq/V^)FQ° + (t^^eVs - Kw^/V^ )FQ^(B) = 0 

(2.32.b) 

F^°(B) = gltooFgOfB) + to^Fo^(B) (2.33.a) 

Fj^(B) = |(toiFg°(B) + t^FglfB) (2.33.b) 

where 

Fii = -Mg/4 , (2.34.a) 

= [ [ (E' - E)2%^(E)M(E)H(E^2')dE'dE (2.34.b) 
• ' 0^0 ® 

= Second energy transfer moment. 

Equation 2.32 is a set of homogeneous equations. The 

roots of the characteristic equation are the possible values 

of B^. 
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Table 2.1. Values® of 

^00 ^Oi *02 *03 *11 *12 *13 *22 

0.8862 0.3134 0.1919 0.1384 0.7754 0.3392 0.2252 0.7061 

^From Purohit (43) • 

Table 2.2. Values of v ik 

o
 
o
 

>
 ^01 

'—
i >
 

1.330 -0.471 1.828 

For other values of Vj^j^ use is made of the relations 

^ik = V00[("ik/"00) - Tlk]' ̂ ik ° [("ik/"00) - (Vik/'OO)] 

Table 2.3. Values* of T^j^ 

H
 

O
 

O
 % ^02 ^03 Til :i2 :i3 

0.0 0.7071 0.2887 0.1882 -0.5505 0.8674 0.3540 

*From Perez (42). 
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4. Matrix elements and associated integrals 

The success of the P^-L^ equation in interpreting the 

experimental data depends on how accurately the matrix ele­

ments of the scattering operator are determined. For 

P^-L^, only the element Fj^j^ is required. 

The elements can be obtained from the related energy 

transfer moments or their associated integrals. 

Nelkin (38) was the first to introduce A/igg (Mg) in 

estimating the thermalization parameters, by the use of 

variational principles. Using the detailed balance theorem, 

Purohit (44) gave recurrence formulas. 

The values of the energy transfer moments depend on the 

scattering model used. For water, four models are tried in 

this thesis. These are; 

a. Hydrogen gas; The motions of the protons in water 

are like a free gas (58) with no binding between 

protons and oxygen. 

b. Mass-18 gas; The water molecules are considered as 

rigid structures and replaced by a gas of point par­

ticles with mass 18. 

c. Brown-St.John (6): The water molecules are treated 

as rigid structures free to rotate. The rotator is 

then replaced by a free point particle with an "ef­

fective rotational mass" of 1.88. The model util­

izes a trial cross section that contains adjustable 
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parameters so that the computed scattering cross 

section can be fitted to the experimental cross 

section. 

d. The Kelkin water (40): The dynamics of protons 

in water are described by three harmonic oscilla­

tors» two for the vibrational levels at 0.205 ev 

and 0.48 ev and one for the hindered rotation at 

0.06 ev. The motions of the molecules are described 

by a mass-18 gas. 

The second energy transfer moment, iV.^s for the above 

mentioned models is listed in Table 2.4. In all "these cases 

a free gas kernel with mass 16 was considered to approximate 

the scattering from oxygen. 

Throughout the remainder of this work, whenever there is 

a choice among the above models s the Nelkin water model will 

be the one selected. This is justified on the basis that this 

kernel predicts infinite medium spectra in good agreement with 

spectra measured by Beyster (5) over a wide range of poison 

types and concentrations. The kernel also gives diffusion co­

efficients and cooling coefficients in good agreement with 

values measured by Star and Koppel (49). Detailed compari­

sons of the Nelkin kernel with measurements by Eglestaff 

et al. (21) have been made by Goldman and Federighi (25). 

They found reasonable agreement between the theoretical 

predictions of the model and the experimental results at 
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Table 2.4, Second energy moment of the isotropic scattering 
kernel^ 

A 00 i"* (%> 
= )H(E'-"E)(E - E' )^dEdE' 

Kernel 

H gas 3.85 

Mass 18 0.67 

Brown & St.John 5.23 

Nelkin 3.34 

^From Honeck (27). 

all but small values of energy and moment transfer. For­

tunately this region contributes little to the total cross 

section or to the energy transfer moments. Finally, the 

Nelkin water gives a total cross section over the entire 

thermal energy range. 

B. Time Eigenvalues 

A study of the eigenvalue spectra in the multigroup 

approximations (15, 52) indicated the possibility of a travel­

ing wave phenomenon at large bucklings. This work is extended 

here to the P^-L^ approximation for two reasons. First, Tra-

velli andCalame (52) pointed out that the fundamental eigen-

value curve in the (X, B ) plane, in a 4-group P^ approxi­
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mation, contradicts the experimental results in having a 

positive curvature at the origin. This study will explain 

the nature of this contradiction. Second, the split of 

energy into few groups does not reflect the usual diffusion 

cooling phenomena (15). The diffusion cooling is obtained 

in the continuous energy representation by expanding the 

2 lowest eigenvalue in power series of B , The radius of con­

vergence of this expansion is evaluated by a knowledge of 

the eigenvalue spectra. 

The eigenvalue problem relevant to this study is 

Since equation 2.35 consists of two linear homogeneous 

equations, the eigenvalues are fixed by the condition that 

the determinant of the coefficients must vanish, i.e., by 

the equation 

Q(K,B2)  =  ( tQQeVa -  Kwoo/Vo)( t i iB2/3  -  Kw^/V^ + Pi l l  )  

= 0 

(2.35) 

- (tloEf/3 - KXolAo)^ = 0 (2.36) 

where K is related to \ by 2.30. 

/ 2 2 
The function Q(K,B ) is a polynomial in B of degree 2 

2 
and for a fixed B it is a polynomial of degree 4 in K. In 
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general, for a approximation there is a polynomial 

of degree N + 1) in and of degree M(N + 1) in K, 

The expansion of 2.36 gives 

Q(K,B2)  =  

-3k\q[2S^^Q(wqqWJ^J^ - *01^) + Wqq Pi l l  ]  

+ i<^V^^[B^{viiWQQ - 2VQIWqi + VQQWH) 

•*• 3%tro(*00*ll " *01^) ^^tro*00 PlJ ^ 

- KVo^^%troB^(viiWoQ - 2VQIWqi + VQQWH) 

+ [Fljj (3%tro*00 •*" B^Vgo)] 

+ (vqqVh - Vqi^) + ZtrgVoo ] - 0 1] 

(2.37) 

r\ 
First estimates of the roots of Q(K,B ) were obtained 

2 by plotting this function versus K at specified values of B . 

Some of these plots are indicated in Figure 2.1. These roots 

were then taken as first trial values in Newton Raphson method 

(33). Iterations were carried out on the IBM-360 computer un­

til the desired accuracy was obtained. Values of the various 

cross sections used in the numerical calculation are given in 

the Appendix. 
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figure 2.1. Roots of the poiynoiTiiai, C(K}5 ), for various 

values of B and = 3.34 cm"* 
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A study was made using the four scattering models 

listed in Table 2.4. The results are given in Table 2.5, 

2.6, 2.7 and 2.8. The corresponding curves are shown in 

Figure 2.2, 2.3, 2.4 and 2.5 respectively. For the sake 

of comparison results obtained by the diffusion theory ap­

proximation are also listed in the respective tables. These 

tables show a number of features of interest: 

a. The diffusion approximation gives only two eigen­

values compared to 4 in the P^-L^ approximation. 

This is because the latter approximation has the 

form of the telegrapher's equation (57) and differs 

from the diffusion equation by an additional term 

containing the second order time derivative. 

b. The diffusion theory curves indicate that the de­

cay constants increase indefinitely in direct pro-

2 
portion to B and are always real. This behavior 

2 
stems from the linear relationship between B and K. 

For the P^-L^ approximation, on the other hand, 

9 o 
there exist two limiting values of B , Bf and 

X ) RND X # 

4 , m a x .  s u c h  t h a t :  

2 2 
i. For B < B, , all eigenvalues, K, are real. 

 ̂y mâ X• 

2 2 
ii. For B > Bg , all eigenvalues are complex, ^ ) iilo X • 

iii. For two real eigen-

values exist. 
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Table 2.5. The tabular entries give the decay constants in 
(microseconds)for M2 = 0.67 cm"!, the Duckl­
ings and theories indicated 

^I'^l Diff. Theory 

b2 KQ <2 K3 Kg Kj 

0 .0Cm"2 .000000 .05342 .6216 .6286 .000000 .05342 

.025 .000958 .05812 .62080 .62712 .000949 .05787 

.05 .001898 .06067 .62000 .62500 .001878 .06014 

.10 -  -  - .6163 .62150 - - -

.20 .007218 .07698 .6022 .6214 .007089 .07414 

.30 .01530 .08883 .5992 .6177 .010295 .08374 

.40 .013920 .09923 .5762 .6152 - - - -

.50 .016790 .11508 .56310 .6120 .016278 .10336 

.70 .022757 .14560 .5309 .6078 .021883 .12337 

.90 .028576 .18256 — — — - - - .027249 .14361 

1 .0 .032960 .20410 .4698 .6046 -  -  - - - -

2 .0 .060563 _** -**  .5728 .054918 .25680 

3 .0 .092150 -**  - * *  .5420 .079094 .36068 

4 .0 .127241 -**  «** .5057 - - - -  -  -

5 .0 .173318 -**  - * *  .4612 .126717 .56916 

6 .0 .240806 - * *  - * *  .394 .150387 .67354 

7 .0 -**  - * *  -**  - * *  -  - - -  -  -

- .50 .024300 .01600 .676 .6377 -.025918 .01751 

-1 .50 .09700 -.01900 .7629 .658 -.116506 -.01996 

-2 .0 .132500 -.03100 .8011 .67 -.167261 -.03323 

-2 .5 — - -.04250 .8327 .6808 -.218704 -.04581 

-3 .0 -  -  - -.05300 .8663 .691 -.270457 .05809 

**The root has a comple X value. 
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Table 2.6. The tabular entries give the decay constants in 
(microseconds)"^ for M2 = 3.34cm"l, the bucklings 
and theories indicated 

Pl-L 1 
Diff. Theory 

Ko ' Kl ^2 K3 Ko Kl 

0.0cm ^ .000000 .27642 .62150 .63000 .000000 .27642 

.025 .000967 .28052 — - - — - .000958 .27866 

.050 .001933 .28474 .61570 .62500 .001912 .28091 

.100 - - - - - - .60670 .62330 — - — — — — 

.150 .005780 .30299 - - - — — .005684 .28994 

.200 .007686 .31314 .58650 .62050 .007545 .29449 

.300 .011512 .33642 .56200 .61720 .011220 .30362 

.400 - - - .53050 .61450 - - - — — — 

.500 .019089 .42126 — — —  - - - .018393 .32705 

.700 .026609 - * *  - * *  .60680 .025350 .34071 

.900 .034087 - * *  - * *  -  -  - .032115 .35955 

1.000 -  -  - - * *  -** .59875 —  -  - — — 

2.000 .075289 - * *  - * *  .56880 .066690 .46584 

3.000 .114870 - * *  - * *  .53450 .095517 .56506 

4.000 - - - - * *  -** .49340 - — - - — -

5.000 .219162 - * *  -** .43770 .149238 .76745 

6.000 -** .** .** .33000 .174970 .86977 

7.000 .** - * *  «* *  - * *  - - -

0.500 -.017400 .21180 .69810 .63840 -.020185 .23258 

1.500 -.061500 .12470 .80190 .66170 -.068173 .15251 

2.000 -.083600 - - - .84430 .67290 -.097122 .11744 

2.500 -.106300 .06780 .88250 .68370 -.12985 .08614 

The root has a complex value. 
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Table 2.7. The tabular entries give the time eigenvalues, 
K, in (microseconds)"-^ for M2 = 3.85 cm~^, the 
bucklings and theories indicated 

^i"^l 
Diff. Theory 

Ko Kl Kg ^3 Ko Kl 

,Ocm"^ 0.000000 .31394 .62250 .62730 .000000 .31394 

.025 .000967 .32836 .61931 .62584 .000958 .32104 

.050 .001934 .33321 .61500 .62350 .001913 .32328 

.150 .005791 .35477 .59413 .62184 -  -  - - - -

.200 .007715 .36729 .57670 .62001 .007563 .33684 

.300 .011553 .39864 .54640 .61710 .011258 .34595 

.500 .019200 - * *  - * *  .61200 .018492 .36433 

.700 .026817 - * *  .60672 .025532 .38290 

.900 .034418 - * *  .59985 .032396 .110164 

2 .000 .076627 - * *  - * *  .56812 .067665 .50723 

3 .000 .117461 - * *  - # *  .53350 .097155 .60580 

5 .000 .226681 - * *  - * *  .43211 .151995 .80706 

6 .00 - * *  »**  .178175 .90893 

- .500 -.019800 .25091 .70400 .63750 -.020044 .27481 

-1 .500 -.061900 .15550 .81210 .66200 -.066462 .19318 

-2 .000 -.081400 .12250 .85600 .67320 -.093730 .15642 

-2 .500 -.10300 .09810 .89460 .68400 -.124179 .12284 

-3 .000 -.125500 .07102 — — .69409 -.157929 .09257 

The root has a complex value. 
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Table 2.8. The tabular entries give the time eigenvalues, 
K, in (microseconds)"^ for M2 = 5.23 cm~^, the 
bucklings and the theories indicated 

B2 
Pl-Li Diff. Theory 

B2 Ko Kl K2 K3 ^0 Kl 

0 .Ocm'^ .000000 .43300 .62181 .63853 .000000 .43300 

.025 .000968 .44066 .61923 .000959 .43529 

.050 .001936 .44909 .60720 .62450 .001915 .43749 

.150 .005809 .50411 .55512 .005712 .44650 

.200 .007747 -** .62012 .007594 .45102 

.300 .011625 -** .61730 .011326 .46009 

.500 .019396 -** -** .61203 .018670 .47836 

.700 .027194 - * *  -** .60610 .025861 .49678 

.900 .035028 .59987 .032911 .51534 

2 .000 .079298 - * *  .56620 .069561 .61955 

3 .000 .123000 -** - * *  .53000 .100498 .71667 

5 .000 .246103 -** - * *  .41790 .157991 .91527 

6 .000 -** -** -** .285304 1.01601 

.500 -.019300 .72680 .63870 -.019810 .38879 

-1 .500 -.058200 .23415 .84550 .66310 -.063741 .30466 

-2 .000 -.078000 .19690 .89050 .67440 -.088352 .26525 

-2 .500 -.097600 .16500 — - .68530 -.115049 .22792 

-3 .000 -.122400 .13770 — — — .69620 -.144030 .19288 

The root has a complex value. 
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Figure 2.2. Eigenvalue curves for Mm = 0.67 cm ^ and the theories 
indicated 
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Figure 2.3. Eigenvalue curves for = 3,34 cm"^ and the theories 
indicated 
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Figure 2.4. Eigenvalue curves for = 3.85 cm"^ and the theories 
indicated 
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Figure 2,5. Eigenvalue curves for = 5.23 cm"^ and the theories 
indicated 
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These limiting values are listed in Table 2.9 as 

functions of Mg. It is clear from this table that, 

within the range of M2's investigated, the limiting 

values are monotonie decreasing functions of . In 

2 
addition, the taole shows that Br, is well above Z jITlaX # 

the experimental range of bucklings. Thus the usual 

expansion of the lowest eigenvalue in power series o 

2 2 B is valid for the experimental ranges of B re-
O 

ported in literature. On the other hand, Bf is 
X ) liio X # 

within the range of pulsing experiments. For Nelkin 

scattering kernel, for example, it has a value of 

0.45 cm"^ and the expansion of the second lowest 

2 eigenvalue in power series of B is doubtful. 

2 The eigenvalue curve, which passes through B = K = < 

has a negative curvature at this point for all the 

models in question. The amplitude of the curvature 

increases by decreasing M2. For the Nelkin water, 

the curvature is in close agreement with the experi­

mental results. Recently, Travelli and Calame (52) 

made a numerical investigation oh thermal neutron 

space time eigenvalue spectrum of the multigroup Pj^ 

proximations for a modified form of Radkowsky kernel 

Their results, in general, agree with the present 

findings. However, in a 4-group calculation, al­

though the curve corresponding to the fundamental 
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Table 2.9. The limiting values of buckling and the corres­
ponding decay constants for various water scat­
tering kernels. Values of Xiin. obtained by 
other authors are also indicated 

Kernel 
and 

ref erences (cm-l) 

Bf 1 jmax 
(cm'2) 

B 
2 jmax 

(cm"2) 

"lira 

(10 -4 sec 7l) 

Mass-18 0.67 

Nelkin 3.34 

Mass-1 3.85 

Brown & St.John 5.23 

Mass-1 (41) 

GIN (41)3 

Gorngold and 
Nichael (12) 

Doppler-
Corrected (45) 3.17 

1.37 ±. .03 

0.45 ± .02 

0.37 ± .02 

0.15 ± .02 

6.67 ± .05 

5.87 ± .05 

5.80 ± .07 

5.70 ± .07 

31.700 

33.300 

33.500 

33.800 

33.650 

31.512 

30.000 

42.000 

^Goldman improved Nelkin kernel. 

eigenvalue correctly passes through the origin, its 

curvature is positive at that point, in disagreement 

with the experimental results. This leads to the 

conclusion that the continuous energy representation 

as given by two Laguerre polynomials predicts the 

results of pulsing experiments more accurately than 

a 4-group approximation. 
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With respect to the nature of the various eigenvalues 

in the P^-L^ approximation, one has the following argument; 

For the sake of simplicity let us identify them first by the 

sequence Kg < < Kg < Kg . 

The (Kg,Kg) pair is identified separately from the 

(Kj^jKg) pair by virtue of the one-speed model. For this 

case equation 2.10.b reduces to the form 

or 

" V^^TR ^a^ ^ ̂ a^TR "^3 (2.10.b) 

2 For each value of B , this equation gives two roots, 

V / 4(3%_%Tp + B^) 
K  =  X  -  -  Z a ) [ l  ± J l  -  "  2  ] •  ( 2 . 1 0 . b )  

^l^TR '"a' 

which are identical to Kq and K^ except for some modifications 
41 

due to the change in the energy spectrum. Equation 2.10.b 

emplies that K is real only if 

This means that the basic physical phenomenon of traveling 

waves is not affected by the energy dependence as long as 
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the time behavior of the current is taken into consideration. 

In case of no absorption and no leakage (B = 0) the 
I I  

two eigenvalues of 2.10.b become 

Kq = Xfl ° ° • . 

The eigenvalue zero corresponds to a mode which persists 

indefinitely; the corresponding eigenfunction has an arbi­

trary amplitude to match the initial flux but has no current 

component. The eigenvalue has an eigenfunction which 

has an arbitrary current amplitude to match the initial cur­

rent. This second mode then is simply an angular transient 

which is due to the mismatch of the initial angular distri­

bution of the persisting mode. The neutrons in the second 

mode do not leak out of the system nor are they absorbed 

2 since in this particular example B = 5!^ = 0. In this case 

also the net current is zero according to equation 2.10.a. 

Th>.- ! ;taken for the angular transient to rearrange itself 

•M titp persisting distribution is of the order of 

As the leakage and absorption terms increase from zero, 

the net number of neutrons in the current transient becomes 

non-zero. This net number is just the number of neutrons 

that will actually leak from and be absorbed in the second 

mode. For large enough leakage or absorption the net number 

of neutrons in the transient can be considerable and the 
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influence of leakage is to make the properties of this tran­

sient more like that of the persisting mode. 

On the other hand, the (K^sK^) pair can be identified 

from the pair by the diffusion-theory approximation 

which gives a pair of eigenvalues close to the (KqjKj^) pair 

2 
at small values of B . Since in this case the time dependence 

of the neutron current is neglected and since in one-group 

diffusion approximation there is only one eigenvalue which 

2 
is closely related to Kg at small B , then is simply an 

eigenvalue of the energy transient. This transient is a dis­

tortion of the fundamental mode spectrum. It is essentially 

an eigenvalue of the scattering kernel. In conclusion the 

four eigenvalues are interpreted as follows: 

Kq = The fundamental eigenvalue. 

= The eigenvalue of the energy transient. 

= The eigenvalue of the angular transient which is 

a distortion to the second energy mode (with an 

eigenvalue K^). 

= The eigenvalue of the angular transient that dis­

torts the fundamental mode. 
O 

The value of K at B_ is the limiting value, K-,. , 
^ X • «L xm 

for the fundamental eigenvalue Kq. The corresponding value 

of Xi. is obtained by adding the constant term X Xill O o O 

Values of obtained by this method and as reported by 
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different authors are listed in Table 2.9. This table indi­

cates that the limiting value is a function of the chemical 

binding of the water molecules and that it increases slowly 

with Mg. 

Ohanian and Daitch (41) calculated for the Mass-l 

and the GIN (for the Goldman improved Nelkin) scattering 

kernels. Their calculations were based upon a numerical 

method employing a discrete representation of the energy 

variable. Their reported value for the Mass-1 kernel is in 

excellent agreement with the present value as shown in Table 

2.9. One can also observe the good agreement between the 

value for the Mass-18 and that for the GIN kernel. The two 

values differ by less than 1%. 

While all values reported in Table 2.9 agree with each 

other within 10%, the value reported by Purohit and Sjostrand 

(45) is out of this range. From the foregoing this value for 

the Doppler-corrected kernel should lie in the range 33.0 x 

lO'^ - 33.3 X 10^ sec.'l 

C. Diffusion Parameters 

In section B the discussion was mainly on the behavior 

of the time eigenvalues in the real (K,B ) plane. In the 

light of the observations in that section, analytical ex­

pressions for various diffusion parameters of water will be 

developed here. 
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The first step in this direction is to write 2.37 in 

the form: 

^2 . |-B^(tiiWoo - Zipi^oi + + 3wqq 

3(wooW2I * 

+ y2|-B'^^^00"^11 " tpj) + ^^^^00 l^lll j 

^(Wii - *01 ) 

(2.38) 

where t^j^ is given by 2 . 2 1 .  

Equation 2.38 can be regarded as a transcendental quad­

ratic equation with two roots given by 

*0 = to - YoSao 

= %[bo " (OQ " 4Co)^] (2.39) 

Ki = " VoZao 

= y[bi + (b£ - 4C^)4] 

where 

(2.40) 

bn = Vo[-
B^(tS?^w + t^PI^w, 1 ) + 3WQQ |F^2 11 '"00 ^^01 *'01 " ̂ 00 "11' 

3(wooWii - Wqj^) 
•], (2.41) 

S = 

9("oo"ll «oil 

], (2.42) 

and 
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4k = Vik/'Vtro - K„) Î n = 0,1 . (2.43) 

From these equations valuable information can be ob­

tained . 

!• Diffusion cooling coefficient 

2 The expansion of 2.39 in power series of B is guar­

anteed only if B^ < B? . If, in addition, B^ is small 
^ y  rnd X • 

the expansion assumes the simple form 

^0 " ̂0 • ̂o-ao 

= - C^(B^)B^ + OB^ (2.44) 

where 

P d2(B) 
CjlB ) = 9-V^ ' (2.46) 

The numerical factor, g, is a function of the energy 

dependence of the transport mean free path and the number 

of the Laguerre polynomials used in the series expansion of 

the flux. Values of the factor g are given in Table 2.10 

for the several approximations used. 
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Table 2.10. Comparison of several expressions for the nu­
merical factor g 

Values of g under 
several approxi­
mations 

Perez 
Nelkin Purohit et al. Pi-L-, 
(38) (43) T42T" 1 1 

Energy dependent trans­
port mean free path 

Constant transport 
mean free path 

1.772 

0.443 0.443 

1.772 1.776 

0.443 0.443 

The coefficient; Cjj of B is the transport analog of 

the diffusion cooling coefficient C^, obtained from the dif­

fusion theory. C^, however, differs from C- in its dependence 

2 2 
on B . To suppress the B -dependence, one should write 

D^(B^)B^ = (2.48) 

C^(B^)B^ = CBy (2.49) 

where. 

= The diffusion coefficient 

° """OO/S^oo^tro" 
(2.50) 

C = The diffusion cooling coefficient 

- 90./% 

and By is given, to the order of B^, by 

(2.51) 
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= B^/[i - D^B^d - (2.52) 

2 
This expression shows that By is a function of both the 

geometric and the scattering properties of the moderator. 

The ratio Bj/B^ is plotted versus B^j for ̂ 2 = 3.34 cm ^* in 

2 
Figure 2.6. The curve shows that, for the values of B con-

2 2 
sidered, B^ differs from B by no more than 4%. Hence one 

2 can consider B^ as a transport buckling with a non-diffusive 

2 2 2 
correction for B . Furthermore, the values of Bj/B reported 

in Table 2.11 show that the ratio is not sensitive to for 

2 
small values of B . 

The substitution of 2.48 and 2.49 into 2.44 gives 

Ko = to - Vo%ao 

= DgB^ - CBj + OBy (2.53) 

2 
Both DQ and C are independent of B . 

Expression 2.51 for C was first derived by Nelkin (38) 

using the Rayleigh-Ritz variational principle, based upon the 

neutron temperature concept. Using the same concept, Mani 

(35) modified it to take into account the variation of the 

transport mean free path with energy. Singwi (48) developed 

a general theory of the diffusion cooling based upon the ex­

pansion of the asymptotic energy distribution by a sum of the 

associated Laguerre polynomials of order one. Hafele and 

Dresner (26) have also given a similar theory for the calcu-



www.manaraa.com

43 

I.OS 

1.04 CJ 
CO 

CVJ 
00 

1.02 

1.00 
0.8 0.0 0.2 0.4 

Figure 2.6. A plot of the ratio B?/B^ versus for = 
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Table 2.11. The ratios of Bj/B^ for various values ot B^ 

and two values of Mg 

B^/B^ 

2  ^ 2  . . .  
B (cm ) y = 3.34 cm'^ = 3.85 cm'^ 

0.000 1.0000 1.0000 

0.025 1.0016 1.0016 

0.050 1.0031 1.0031 

0.150 1.0093 1.0093 

0.200 1.0124 1.0124 

0.300 1.0184 1.0184 

0.500 1.0303 1.0305 

0.700 1.0427 1.0431 

lation of the diffusion cooling coefficient in a monoatomic 

heavy gas, using the same expansion. Kazarnovsky £t al. 

(30) also used the Laguerre polynomials in their study of 

neutron thermalization problems. All of these studies were 

undertaken for the finite medium under the diffusion approx­

imation. Nelkin (39) studied the decay of a thermalized 

neutron pulse in an infinite plane geometry using the trans­

port theory in the Fourier space. The Fourier variable, B, 

in Welkin's formalism has been left ill-defined. The appli-
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cation of this method to a moderator with finite size and 

energy dependent transport mean free path is not unique (59), 

Expression 2.50 and 2.51 were derived using neither 

the neutron temperature concept nor the Fourier transform 

technique. By the application of the proper boundary con­

ditions, it will be shown later that the variable B in this 

thesis has a definite physical meaning. 

Table 2.12 shows a comparison between values of C and 

2 obtained by the suppression of the B -dependence and 

those reported by other authors. It is clear that there is 

an agreement between the present values for the Nelkin's 

water and the values obtained by Gelbard and Davis for 

the Radkowsky kernel. 

As a further check on the validity of the above ex­

pansion, \q was calculated from 2.53 and 2.39 with an iter­

ative technique. The results are listed in table 2.13 for 

M2 = 3.34 cm ^. The table indicates that, within the limits 

of accuracy set for the computer, both values agree quite 

satisfactorily. 

2. Thermalization time constant 

The thermalization time constant is defined as the time 

constant with which the neutrons attain an asymptotic energy 

distribution by colliding with the atoms of a moderator. In 

case of an infinite and non-absorbing medium equation 2.39 
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Table 2.12. Values of the diffusion cooling coefficient, C, 
and diffusion coefficient, D , for various 
methods 

Method 
and 

references 
Kernel 

C 

4 -1 cm .sec. 

D o  

cm^.sec,^ 

Range of 
bucklings 
cm-2 ̂  

P l - L l  
H gas 3139 38692 ^ * 

M  Mass-18 18038 38692 - - -

!• Nelkin 3618 38692 — — — 

t l  Brown & 
St. John 2311 38692 ^ 

P3 (24) Radkowsky 3614 38380 

Calame (7) Nelkin 2931 36810 - — — 

Scott et al. 
(46) m m m» 385001800 . 0 0 6 - , 0 1 8  

Antonov et al. 
(1) » M «w 400011000 3500011000 .09 -.93 

Lopez and 
Beyster (34) 48521800 367001370 .0 -1.00 

Table 2.13. Values of the fundamental decay constant, XQS 
as obtained from the correct form 2.39 ajid the 
expansion form 2.53, for M g = 3.34 cm"'^ 

Xgtsec."!) 

(cm Correct value Expansion value (X^corr - Xq expans.) 

0.000 4876 4876 0.00 
0.025 584315 5843 0.00 
0.050 680915. 6809 0.00 
0.150 1065615 10651 5.0015 
0.200 1257215 12563 9.0015 
0.300 1638815 16359 29.0015 
0.500 2396515 23850 115.0015 
0.700 3148515 31170 315.0015 

^Nelkin scattering model. 
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and 2.40 reduce respectively to 

(2.54) 

^1 ^1 "^o^oo^ii/f^bo^ii ' ̂oi) o^OO^li 

= 2VQM2/3Vr (2.55) 

In this case there is an asymptotic energy distribution. 

The decay of this distribution is governed by XQ equals to 

zero. If the atoms of the moderator have a Maxwellian vel­

ocity distribution, then the asymptotic distribution is also 

the Maxwellian distribution which is established with a 

thermalization time constant equals to the reciprocal of 

' In the case of a finite medium, the zeros eigenvalues 

associated with the higher spatial modes also play an im­

portant role in the establishment of the final asymptotic 

energy distribution. If the amplitudes of higher modes are 

very small compared with the fundamental spatial mode, then 

the first eigenvalue, ) would give the thermalization time 

constant in the finite medium. The discussion, here, is 

limited to the time constant with which the Maxwellian dis­

tribution is established. 

The thermalization time constant is given by the re­

ciprocal of 

^th ~ ^t (2.56) 
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a result which is identical with that derived from the dif­

fusion theory (43). f^ is a correction factor due to higher 

order polynomials than Its value is 1.15 (45). 

Various models have been considered in calculating t^^ 

according to equation 2.56. The results are presented in 

Table 2.14. Two cases were treated. In case I the transport 

mean free path is energy dependent; while in case II it is 

taken as a constant. As could be seen from this table» t^^ 

for the constant is about 4 times as large as that for 

the energy dependent case for all the models used. Thus a 

comparison between these results and the experimental values 

of t^^ would indicate the energy behavior of the transport 

mean free path. Fortunately, Moller and Sjostrand (37) have 

measured t^^ in light water by obtaining information on the 

change of the neutron spectrum with time from the reaction 

rate with spectrum indicators dissolved in the system. They 

reported a value of 4.1 ± 0.4 usee. This agrees with the 

value of 4.16 usee obtained for = 3.34 cm"^ in the energy 

dependent case. One concludes, therefore, that the transport 

cross section for light water behaves more or less like 1/V. 

DeJurene (17) took into account the spectral changes 

caused by diffusion-cooling and reported a value of 2.77 ± 

0.65 usee. Although this result disagrees with the experi­

mental value reported by Moller, yet it is in accord with 

the theoretical value for = 5.23 cm"^ (Brown and St.John 
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Table 2.14. Thermalization time constant for light water in 
the P^-Li approximation for various scattering 
models 

Kernel K  

(cm"^) 

t^^ (microseconds) 

Case I Case II 
(Xtr - const.) 

Nelkin 

Ma ss-1 

Mass-18 

Brown & 
St.John 

3.34 

3.85 

0.67 

5.23 

4.16 

3.61 

13.85 

2.66 

16.69 

14.48 

83.17 

10.66 

scattering model). 

Wood (60) represented water with the effective width 

kernel of Egelstaff (22). He calculated t^^ for water as a 

function of the reciprocal of the effective width parameter, 

d) of the scattering law. His results are listed in Table 

2.15 which shows that the value of t^^ at d = 0.27 is in 

agreement with the P^-L^ value for the Nelkin's model. 

The thermalization time constant can also be expressed 

in terms of the cooling coefficient by eliminating be­

tween 2.51 and 2.55. The result is 

= ft ; (^tr ̂  const.), 

^0 (2.57) 
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Table 2.15. Thermalization time constant for light water by 
other authors 

Reference Kernel tth (microseconds) 

Mblier & 
Sjbstrand (37) ... 4.10 ± .4 (water) 

DeJurene (17) — - - 2.77 ± .65 

Wood (60) Effective width 4.50 (d*= .21) 

II It II 4.13 (d = .27) 

M II II 3.71 (d = .50) 

O Mass-1 3.60 
H Mass-1.88 4.89 
H  Mass-2 5.05 

is the reciprocal of the effective width parameter of 
Egelstaff Kernel (22). 

in agreement with the expression obtained by Purohit (43). 

D. Space and Energy Dependent Eigenfunctions 

The existence of a unique buckling depends on the va­

lidity of the first fundamental theorem of reactor theory 

vis, space and energy are separable; 

$(r,E) = X(r)Y(E) (2.58) 

This is true in a homogeneous infinite medium. It re­

quires, however, some justification in finite systems. What 

is done is to seek an "asymptotic" region inside the medium 

far from the boundaries in which the first fundamental theorem 
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is valid. Experiments (29) have been performed to test this 

assumption. Those by Inonu at Oak Ridge are particularly 

interesting. Inonu measured the thermal and epithermal fluxes 

and showed that only if data within 3-3.5 inches of the bound­

ary of a large critical aqueous U-235 solution were included 

was the extrapolation distance independent of energy i.e. 

equation 2.58 applies. This example is an extreme example; 

in non-multiplying medium the effect will be less. 

On physical grounds the exact solution can be written in 

the form 

•»(r,E) = *as(r,E) + 

= X(r)Y(E) + «trans.(f'E) (2-59) 

The asymptotic part establishes a unique extrapolation dis-
O 

tance, d(B ), for a given buckling and energy. Figure 2.7 

shows how this extrapolation distance is related to the 

asymptotic flux. The distance S is the width of the zone in 

which the term *trans is important. 

In this section analytical expressions for and 

are established. In a latter section an expression 
trans. 

for d(B^) will be found, 
o 

As has been mentioned before, the polynomial Q(K,B ) 

2 
given by equation 2.37 is of degree 2 in B , For K = KQ 

(the lowest eigenvalue), the equation for B becomes 
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Extra polGtad 
boundary 

I Anciyvicci 
\p convinuGvion 

of "i'hG csyni 
V disvributïcn 

Figure 2.7, The relation between the extrapolation distance, 
d(B2); and the asymptotic flux distribution. 
The width, S, of the transient zone is indicated 
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+ + #(Wii - "oi") - - 0 
0 

where is given by 2.43. 

For KQ < the coefficients in 2.60 are real. 

In addition, in case of light water, the term ~ 

/ Q \ 2 
"^01 ) is a positive quantity. The last coefficient is 

negative only if 

K < ^o"00^2 (2.61) 

4(woo"li - '"or' 

Thus it is easily established, by requiring that the coefficient 

2 
of B is positive, that for 

^0 —J 2_2 y. (o 62) 
4(VoO"ll " ̂ ll"00 - 2v0l"0l' 

^ 1.8S X 

o 
there exist two values of B*" 

= 8% ; = -u2 (2.63) 

p 9 
where both BQ and U are positive quantities. The interpreta-

2 2 
tion of BQ as the geometric buckling, , of the system depends 

on the application of the boundary condition at the vacuum-
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matter interface. The commonly used outer face boundary con­

ditions are the Marshak and the zero extrapolated flux boundary 

condition. The first boundary condition will be used in this 
o o 

thesis. Taking BQ as , one can write the scalar flux in the 

f orm 

ÔQ(r,E) = Fo(B,E)jo(Br) 

Fo(Bg,E)jo(Bgr) + FQ(U,E)jQ(iUr) (2.64) 

where 

Fo(Bg.E) = Ag^Ee-=[Fg(Bg) + ^(2 -  EiplfBg)] ,  (2.65) 

Fq(U,E) = AyEe"^[F°(U) + M 2  -  E)F^(U)] (2.66) 

Recalling equation 2.59, one can associate the first term 

of 2.64 with X(r)Y(E) and the second, term with 

1_. The relaxation length 

The physical meaning of is understood by writing 2.64 

in the form 

.^(r.E) = ABgEe-E|[FgO(bg) + ̂ (2 - E)Fol(Bg)]jo(Bgr) 

+ ^ [Fq°(U) + (2 . E)FQ^(U)]jQ(iUr)| (2.67) 

The ratio Ay/Ag is determined by applying the Marshak's 

boundary condition at the vacuum interface. It is found that 
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A,, e-U(R-r) 
— j„(iUr) c: const x (2.68) 

Thus for distances > U"'^ this term decays rapidly and 

U'^ is interpreted as a relaxation length which is a measure 

of the transient zone near the boundary, u'^ is given by 

U = 

g .1 7*315 X lO^M 
= 1-4027 X 10" - KQ)( ^ - 2-9465) 

1.3349 X  10*(W./.Kn - 3-0208 x  l O " ^ ) , ,  

X [i 4. (1 + ; p-2 ^2 
(2-926 X lO^Mgy^Kg - 2-9465)^ 

(2.69) 

For the Nelkin's water, calculations indicate that U ^ 

2 
= 0.483 cm in the limit as Bg-O. The results suggest that 

deviation from the asymptotic solution begins to become large 

at points of the order of 0.5 cm from the boundary. Table 

2.16 shows the variation of with buckling. The observed 

increase of the relaxation length with is expected on the 

basis that the energy spectrum deviates more from the Max-

wellian distribution for small systems. U ^ is very sensi­

tive to the value of and the effect of chemical binding 

on the space-energy separability can be studies through this 

parameter. From Table 2,16 it can be seen that the smaller 

the value of the less accurate is the space-energy 



www.manaraa.com

56 

Table 2.16. The variation of the relaxation length for water 
with buckling and 

U"^(cm) 

(c-2) • = 0.67cm^ = 3.34cm^ = 3.85cm^ M2 = 5.23cm^ 

0.000 1.07000 0.48300 0.44300 0.38200 

0.025 1.10244 0.48557 0.45187 0.38732 

0.050 1.12898 0.48818 0.45403 0.38876 

0.150 1.24405 0.49889 0.46284 0.39462 

0.200 1.30713 0.50439 0.46736 0.39762 

0.300 1.44415 0.51571 0.47663 0.40374 

0.500 1.73918 0.53967 0.49617 0.41656 

0.700 0.56552 0.51714 0.43017 

0.900 .  - * *  0.59339 0.53964 0.44466 

®The values of correspond to the scattering kernels 
listed in Table 2.4. 

**A complex value. 

separability, i.e., the smaller is the asymptotic region. 

For ̂ 2 = .67 cm"^ there is no unique buckling above a value 

of 0.5 cm~^ where the inequality 2.62 is invalidated. 

2. The asymptotic diffusion-cooled neutron spectrum 

The spectrum of the asymptotic distribution is given 

by 

FQ (B ,E) = Ag Ee"^[FQ°(Bg) +-^(2 - E)F^(Bg)] (2.70) 
= g v2 
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where is an arbitrary constant that can be taken as 

unity since it originates in the set of two homogeneous 

'9 
equations given by 2.32. The quantity FQ{B ) has the form 

Bg^ii /3 - ^ ̂'2/4 

The latter expression is obtained from 2.32 and is considered 

as a measure of the deviation from the Maxwellian distribu-

1 2 
tion. Figure 2.8 shows a plot of FgfBg) versus B^. It is 

clear from this Figure that FQCB^) is zero only for an in­

finite medium where the energy distribution follows the 

Maxwellian distribution. 

Examples of the diffusion-cooled spectra for the Nelkin's 

scattering model are shown in Figure 2.9. The corresponding 

data are listed in Table 2.17. In Figure 2.9, the shifting 

of the peak of the curve toward lower energy values with in-

creasing B^ is evident, and the change of the shape of the 

curve is indicated. The Maxwellian distribution is seen to 

represent the limiting value of F^fB^'E) as Bg-»0. The mag­

nitude of the cooling effect is indicated by the shifting of 
O 

the peak value of the curve from one unit of KT for B =0 g 
to .87 units of KT for B^ = .9 cm"^. 

y 

Recently, Clendenen (9) made similar calculations for 

light water treated with the Nelkin model. He used a new 

iterative method applied to a approximation although 
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Fiaure 2.8. Buckling dependence of Fi(B^) for various values 
of ^ 9 
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B^= 0.0 (Maxwellion) 

C3> 

ur 

0.0 
0.0 

E ( KT Units) 

Figure 2.9. Diffusion-cooled neutron spectra for Nelkin rtiodel 

of water moderator at room temperature. Variation 
O m O  

with buckling Bg (cm ) is shown 
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Table 2.17. Normalized values of diffusion-cooled neutron 
spectra for Nelkin model of water moderator at 
room temperature. Variation with buckling 
is indicated ^ 

Energy, E 

in units of KT 

Fo(B„>E) Energy, E 

in units of KT 
9 -9 
Bg = 0.0cm 3^ = 0.5 cm" 

9 
^ Bg = 0.9 cm"2 

0.000 0.0000 0.0000 0.0000 

0.025 0.0245 0.0266 0.0280 

0.500 0.3033 0.3235 0.3385 

0.750 ^ 0.3543 0.3740 0.3885 

1.000 0.3679 0.3842 0.3963 

1.500 0.3347 0.3421 0.3476 

2.000 0.2707 0.2707 0.2707 

0.500 0.2052 0.2006 0.1973 

3.000 0.1493 0.1427 0.1378 

3.500 0.1057 0.0987 0.0930 

4.000 0.0732 0.0667 0.0619 

4.500 0.0500 0.0445 0.0403 

5.000 0.0337 0.0292 0.0259 

his results generally agree with the present findings, the 

method does not directly give the limiting value of FQIB^JE) 

2 
as B -O. Besides» this method is only suited to high-order y 

approximations to the transport equation. 
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3. The energy spectrum of the transient component 

This spectrum is given by 

Fq(U,E) = >\jEe"^[l + -^(2 - E)F^{U)] (2.72) 

where 

U^tAX'/3 + WnnKn/V 00 / O T WQQ.NQ/ 
(2.73) 

*0 

FQ(U) is plotted, for various scattering kernels, in 

Figure 2.10. It starts from a non-zero value for an infinite 

medium and increases steadily with decreasing the size of the 

system. The implication of these results is that the energy 

spectrum of the transient distribution is always a non-Max-

wellian distribution and that its magnitude becomes signifi­

cant for small systems. Examples of this spectrum, for the 

Welkin's water are shown in Figure 2.11. The corresponding 

data are listed in Table 2.18. Each of these curves is 

shown to have a minimum and a maximum the location of which 
O 

depends on the value of i.e., on the cooling effect. 

Having discussed the energy spectra of the asymptotic 

and the transient components of the scalar flux, it is of 

practical importance to discuss this distribution as a func­

tion of the position r. The flux ÔQ(r,E) as given by 2.63 

is plotted in Figure 2.12 versus the ratio r/R at =0.5 

cm ^ and two different values of energy. For the sake of 
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Figure 2.10. Buckling dependence of FQ(U) for various 
values of Mg 
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Bg - 0.50 Cnf 

Bo = 0.05 Cm' 

-Q 

0.8 

^ 0.4 

0.0 

-0.4 

ENERGY (KT units) 

Figure 2.11. Transient energy spectra for Nelkin's water a: 

room temperature. Variation with buckling 
9 ••9 
Bg(cm ) is shown 
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Table 2.18. Transient energy spectra at room temperature for 
the Welkin's water. Variation with buckling 
B2(cm" ) is indicated 

Energy, E, 

(KTUnits) 

•n
 

o
 C
 

m
 

(Arbitr ary Units) 
Energy, E, 

(KTUnits) = 0.05 cm 
y 

-2 Bg = 0.5 cm"^ 

0.000 0.0000 0.0000 

0.025 0.1235 0.1534 

0.500 1.2342 1.5170 

0.750 1.2605 1.5360 

1.000 1.1207 1.3490 

1.500 0.6772 0.7810 

2.000 0.2707 0.2707 

2.500 -0.0048 -0.0625 

3.000 -0.1562 -0.2490 

3.500 -0.2187 -0.3152 

4.000 -0.2264 -0.3143 

4.500 -0.2058 -0.2835 

5.000 -0.1732 -0.2360 

comparison, the asymptotic flux distribution is also plotted 

in the same Figure from which one can observe the following: 

1. For points far from the physical boundary by amounts 

of the order of U the total flux, independent of 

energy, has the same value as the asymptotic dis­

tribution. 

2. Close to the boundary the two fluxes differ from 

each other. The difference depends on the energy. 
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At low energies (close to KT), the asymptotic flux 

has a higher value; while at high energies (in the 

order of 5KT) the asymptotic flux has a lesser mag­

nitude than the total flux. 

Thus the effect of the transient flux near the boundary 

is a function of energy. At high energy the effect is sub-

tractive and the predicted extrapolation length, according 

to the "total" flux distribution, is greater than that for 

the asymptotic distribution. On the other hand, at low en­

ergies the effect is additive giving rise to an extrapolation 

distance lower than the asymptotic value. In practice, how­

ever, the flux distribution is measured by a boron trifluride 

detector over a range of energy. The net transient effect in 

this range is found to be additive. This point will be made 

more clear in the next section in the discussion of the ef­

fective average energy. 

In support of the above observations, are the results of 

Walker (56) who illustrated the effect of the flux distortion 

on the extrapolated endpoint of a 4-in cubic container filled 

with water. His results indicated that the extrapolation 

distance increases steadily by including more points closer 

to the boundaries. 

E. Spectrum-Averaged Parameters 

Having obtained «^(rjE), one is in a position to calcu­

late various parameters averaged over the space-dependent 
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neutron spectrum. Two of these of interest in the thermai-

ization problem are 

1. Effective average energy. 

2. Effective buckling. 

1, Effactive average energy 

The effective average energy is defined (59) by 

[ E*o(r,E)dE 

= —S (2.74) 

J »o(r,E)dE 

This leads to 

A 

Jo'V> ^ jo'iUr) 
g 

(2.75) 

where 

\ Fj(U)jQ(iUR) - ̂ (t^°) + t^°^F^(U))Uj^(iUR) 

and 

j^(x) = First order spherical Bessel function 

_ sin X _ cos X 

X 

Eg^^(r,B ) is a measure of the way in which the neutron 
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energy spectrum changes with position and how accurately 

space and energy can be made separable. Two special cases 

are of interest; ^eff^^'^g^ and These are re­

spectively given by 

Fl(Bg) + (UAy/BgAy )F1(U) 

"'''-li 1 . (UVB^Ae') ' 
^ 9 

etf g ^2 1 + Y 

where 

Y = -

o<"' ^ Ht' + tj°'FQ(U)](UcothllR - 1/R) 

For an infinite medium 

ËeffCR-" , B^-+0) = 2KT , (2.79) 

the same as that one obtained by assuming space and energy 

to be rigorously separable. This average is for the Max-

wellian distribution. For a finite medium, however, there 

is a preferential leakage that depends strongly on the be­

havior of the transport mean free path with energy (59). 

For light water, is proportional to the square root of 

energy and the preferential leak is in favor of the high 
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energy neutrons, a matter that results in a diffusion cool­

ing phenomenon. For most of the crystalline moderators, 

like beryllium, the reverse is true (59) and one has a dif­

fusion heating. 

The effective average energy for light water is plotted 

as a function of position in Figure 2.13. The plot (for 

Mg = 3.34 cm'^) shows the constancy of the average energy 

with position up to a distance from the boundary in the order 

of Close to the outer boundary, there is a marked in­

crease in A physical explanation of these results can 

be given in the light of certain experiments. According to 

Zinn (61) the temperature of neutrons emitted from a paraf­

fin surface was 390°K whereas their temperature inside the 

medium was 300°K . 

In conclusion, for a precise calculation of the neutron 

spectrum in a finite system it is necessary to take into ac­

count the changes in neutron density and spectrum in the 

vicinity of the boundary of the medium, which are caused by 

escape, and also the transfer of neutrons from a group with 

one energy to a group with another as a sequence of the energy 

exchange in the medium. 

2,, Effective buckling 

The asymptotic region can be displayed quite easily by 

the expression (24) 
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Figure 2.13. Variation of the effective average energy with 

position for = 3.34 Water is taken as 

1/V scatterer 
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nZ 
®eff 

4uXr,E)dE 
0 ̂  

V(r,E)dE 
0 u 

sinB^r - W sinhUr 
o g 

= Bg f (2.80) 

sinBgP + ̂ sinhUr 

disregarding the second term of 2.80, i.e., taking into ac-

2 2 count the asymptotic flux, then B^ = Thus the space 

p 2 
variation of B^^^ and its departure from B^ indicate the de-

parture from the asymptotic region. B^^^ and -A*o(ryE)/OQ(r,E) 

for a sphere of water are plotted in Figure 2.14. Here 

2 -9 
Bg = 0.5 cm . The effective buckling behaves in a fashion 

similar to the effective average energy defined above, How-

2 ever, the relative variation of B^^^ is much greater than 

that of the average energy. The Figure also indicates that 

®eff corresponds to -A'î'Q{r,E)/OQ( r,E) at E = 2KT. 

F. The Buckling Dependence of the 

Extrapolation Distance 

To obtain the extrapolation distance in case of the 

existence of an asymptotic region the boundary conditions 

must be applied. For the vacuum-matter interface the 

Marshak's boundary condition can be used. In the ap­

proximation it has the form; 
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Figure 2.14. Variation of the effective buckling and 
-A*Q(r,E)/$Q(r;E) with position for = 

3.34 cmT^, Water is taken as 1/V scatterer 
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<.q(R,E) - 2*i(R,E) = 0 (2.81) 

and in the approximation: 

$o(R) - 20°(R) = 0 (2.82.a) 

Oq{R) - 2*i(R) = 0 (2.82.b) 

From equation 2.6, 2.16, 2.33 and 2.63 

•° = Ag + AyiotiUR) (2.83) 

«0 = Ag + AyF^(U)jQ(iUR) (2.84) 
9 

•°(R) 

+ + t^°'F^(U)]j^(lUR) (2.85) 

+ + t|J'FQ(U)]j^(iUR) (2.86) 

By the substitution of these equations into 2.82, the follow­

ing characteristic equation can be obtained. 
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^jo(iUR) - + toi'fo'U'ljl'iUR) 

jo'BgR) - §B (tiO) 4. t<0'Fi(B ))j^(B R) 

= 0 

ifio'lUR) - * t^O'F^(U))j^(iUR) 

(2.87) 

The conventional definition of the geometric buckling for 

a sphere with a radius R is 

This definition can only be retained if d 

stitution of 

d(B^). The sub-

jo(BgR)/no(BgR) = tanB^d (2 .88)  

into 2.87 yields 

d(Bg) = i tan-i(§B2(t<°> H- t<0>Fl(Bg)) x 

1 -
t^C^ + tlOiplfBL) 

11 '0' 21 X a 

too' + toi'Fo'Bg) " 

: - IR'^O' + tôî'fo'Bg)) (Fo'Bg) 

(2.89) 
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where • 

g = R - + t^°^FQ(U)][l - URcothUR] , (2.90) 

h = RF^(U) - + t|°^FQ(U)l[l - URcothURl (2.91) 

The physical meaning of the factor (tg^^ - is 

made clear by observing that 

\ ^ { E )  = 1/[ZTR(E) 
o 

and 

00 "01 *0'"g' " "tr"^' " 
Fo(Bg.E)dE 0 

^ (2.92) 

Thus this factor is the effective transport mean free path 

averaged over the asymptotic distribution. It gives the 

buckling dependence of the extrapolation distance resulting 

from the diffusion cooling. 

Equation 2.89 is a transcendental equation since it 

emplicitly contains d(Bg) in the right hand side. The ex­

trapolation distance for a given buckling was obtained through 

an iterative technique carried out on the IBM-360 computer. 

The results, for various scattering kernels, are listed in 

Table 2.19 and plotted in Figure 2.15. Gelbard and Davis 
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S Method 
.36 

M 2=3.85 Mg =5.23 

.35 M2 =3.34 

<— 
L_ 

CJ 

eu 

"D 

.33 

.32 

.31 

Bn 

Calculated using 2.89 
Gelbard and Davis (24) 

gure 2.15. The buckling dependence of the extrapolation 
distance in spherical geometry. The variation 
with is indicated 
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Table 2.19, The buckling dependence of the extrapolation 
distance in spherical geometry for different 
values of 

Be 
Extrapolation distance, d(B^) cm 

9 

(cm'^) 

Mg = 

0.67 cm ^ 

Mg = 

3.34 cm 

^2 = 

3.85 cm ^ 

= 

5.23 cm"^ 

0.000 0.3432 0.3369 0.3362 0.3347 

0.025 0.3430 0.3389 0.3383 0.3369 

0.050 0.3416 0.3409 0.3404 0.3392 

0.150 0.3326 0.3451 0.2451 0.3446 

0.200 0.3276 0.3464 0.3466 0.3465 

0.300 0.3182 0.3482 0.3488 0.3495 

0.500 0.3502 0.3517 0.3541 

0.700 - * *  0.3511 0.3536 0.3576 

0.900 .** 0.3514 0.3548 0.3605 

**The theory does not hold at this value of 
^9-

(24) have also calculated the extrapolation distance for the 

Pg and the diffusion approximation. The dotted curves show 

their results. For the calculations, the authors employed 

the Radkowsky kernel and the Marshak's boundary condition. 

The diffusion theory curve was obtained by the delta method 

that consists of defining a linear extrapolation distance 

1 
6 

d 
dr^ 

sinB„r 
/(-^) 

r = R 

(2.93) 

r = R 

and an augumentation length (d(Bg) in this section). By 
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2 
plotting 6 versus and starting with a trial value equals 

to d(0), d(Bg] can be obtained by iterating between 2.93 and 

From Figure 2.15 it is clear that, while the P^-L^ curves 

have the general shape of the delta-curve, they markedly dis­

agree with the Pg curve. It can be concluded, therefore, 

that the P^-L^ approximation in spherical geometry with the 

Marshak's boundary condition over-estimates the buckling de­

pendence of the extrapolation distance. 

Gelbard (23) remarked that in a P^ approximation of any 

order the eigenvalue of a spherical reactor is exactly equal 

to the eigenvalue of an "equivalent" slab reactor. An "equiv­

alent" slab reactor is a slab reactor of half thickness R, hav­

ing the same composition as the sphere. The flux in the "equiv­

alent" reactor is constrained to be antisymmetric about its 

midplane. Thus the main mode of a bare sphere having a diam­

eter 2R is equal to the second mode of a bare slab, of the 

same composition, with thickness 2R. In another paper by 

Gelbard and Davis (24) it has been pointed out that the ex­

trapolation distances for a sphere and the corresponding 

equivalent slab are exactly the same in the P^ approximation. 

To test the validity of Gelbard's observations in case 

of the P^-L^ approximation, the equivalent slab calculations 
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were carried out using (53): 

d(Bg) =-^[tan 

.. * • ' „ 

1 - f0<Bg)§ 

with g and h assuming the new forms: 

g = 1 + §[t^0) + t^°^FQ(U)]UtanhUR (2.95) 

h = FQ(U) + + t|5^FQ(U)1UtanhUR (2.96) 

It should be noted that R in 2.94 is the half thickness of the 

p 
"equivalent" slab and is its second lowest eigenvalue» 

Furthermore this equation can be obtained from 2.89 by de­

leting all terms explicitly containing R and replacing coth(UR) 

by tanh(UR). Thus the extrapolation distance of the equiva­

lent slab is a limiting case of the corresponding bare sphere. 

• The extrapolation distances for the equivalent slab are 

listed in Table 2.20 and plotted in Figure 2.16 from which 

one can observe the marked improvement in the behavior of the 

extrapolation distance as a function of buckling. In this 

case the curve for the Nelkin's water agrees qualitatively 

with the curve. The difference in the magnitude is partly 

because of the error involving the approximation and 
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Figure 2.16, The buckling dependence of the extrapolation 
distance in "equivalent" slab geon-.etries. The 
variation with M is indicated" 
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Table 2.20. The buckling dependence of the extrapolation 
distance in "equivalent" slab geometry for 
different values of 

=9 Extrapolation distance, d(Bg) cm 

{cm"^} 

= 

0.67 cm'^ 

Mg = 

3.34 cm"l 

^2 = 

3.85 cm ^ 

= 

5.23 cm'^ 

0.000 0.3405 0.3349 0.3313 0.3328 

0.025 0.3366 0.3329 0.3310 0.3323 

0.050 0.3327 0.3323 0.3307 0.3319 

0.150 0.3180 0.3299 0.3295 0.3299 

0.200 0.3113 0.3287 0.3289 0.3289 

0.300 0.2994 0.3264 0.3277 0.3270 

0.500 0.3219 0.3254 0.3233 

0.700 - * *  0.3176 0.3232 0.3197 

0.900 - * *  0.3136 0.3211 0.3164 

**The theory does not hold at this value of 
^9-

partly because of the error in the Lj^ approximation; besides» 

the two kernels are different. 

From the foregoing> it can be concluded that in order 

for the P^-L^ approximation in spherical geometry to be useful 

in the analysis of pulse experiments the extrapolation dis­

tance of an equivalent slab should be used. This is because 

the Marshak's boundary condition is more suited to a slab 

than to a spherical geometry. 
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III. EQUIPMENT 

The main components of the apparatus used in the ex­

perimental work are 

A. Neutron generator. 

B. Pulsing system. 

C. 400-channel analyser. 

D. Timer system. 

E. Neutron detection system. 

F. Spherical containers. 

G. Shielding facility and detector mount. 

The experimental arrangement of these components was as in­

dicated by the schematic diagram shown in Figure 3.1. The 

individual components are described below. The generator 

control and pulsing console, 400-channel analyser» timer 

system and monitor detector are shown in Figure 3.2. 

A, Neutron Generator 

Fast neutrons were produced by the reaction of an ac­

celerated positive ion beam (deutrons or protons) on a tritium 

target according to the following reaction: 

+ T^ ̂  n^ + He"^ + 17.6 Mev. 

The ion be&m was produced by the Texas Nuclear Corporation 

Model 9400 Neutron Generator whose operation depends on the 

production, extraction and acceleration of ions. The major 
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Figure 3.1. Arrangement of experimental equipment 
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Figure 3.2. Neutron generator and pulsing console, monitor scaler 
timer system, 400-channel analyzer, and accessory 
equipment 
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components of this generator are shown pictoriaily in Figure 

. 3.3 and schematically in 3.4. Positive ions are produced in 

a radio-frequency type ion source and are extracted by apply­

ing a potential across the ion source bottle. The ions are 

focused by a gap lens situated directly after the exit canal 

of the ion source base. The ions leave the gap lens and 

enter the field of the accelerating tube whore they are 

accelerated through a potential of 150 Kv. After leaving 

the accelerating tube, the ions drift through a potential 

free region (drift tube) until they strike the target. A 

vacuum is maintained through the entire system to minimize 

scattering of the ion beam. 

The ion source used in the generator is a radio fre­

quency type which is capable of producing an ion beam cur­

rent in excess of one millianipere. The current is composed 

approximately of 90% singly ionized atomic ions and 10% 

molecular ions. Hydrogen (or deuterium) gas is allowed to 

flow into the pyrex ion bottle by means of a palladium leak. 

The gas from the leak enters through a hole in the ion 

source base. An r-f field (approximately 60 Mc/sec.) ap­

plied to the two excitor rings causes intense ionization of 

the hydrogen gas. The positive ions in the discharge are 

forced towards the exit canal by applying a positive po­

tential across the bottle. A magnetic field whose lines of 

force are in the direction of the long axis of the bottle 
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Figure 3.3. Neutron generator 
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Figure 3.4. Major components of neutron generator 
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is produced by a solenoid coil and serves in restricting 

the electron paths to the center portion of the bottle and 

causes them to spiral. The spiraling motion increases the 

ionization probability in the region of the exit canal. 

The target used with the 9400 consists of tritium 

absorbed onto a thin layer of titanium approximately 

2 to 3 mg/cm thick. The layer has been evaporated onto 

a 0.01 inch thick copper disc. The active area of the 

disc is 1.0 inch in diameter. 

B. Pulsing System 

The Texas Neutron Generator is equipped with a dual 

pulsing system which essentially eliminates any residual 

beam between pulses. This system is composed of pre-ac-

celeration and post-acceleration systems operating simul­

taneously. The post and pre-acceleration systems are 

similar in the electrostatic deflection of the beam. After 

leaving the ion source, the beam is deflected by the pre-

acceleration system. The post-acceleration system deflects 

the beam in the drift-tube section after it has been ac­

celerated. 

By using the dual pulsing system, an ion beam current 

is supplies to the target with the following specifications: 

1. Pulse repetition rates over the continuous range 

from 10-10 ppS) or continuous beam operation. 
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2. Puises 1 p sec. to 10^ jj sec. duration; duty 

cycle not to exceed 90 percent. 

3. Pulse rise and decay times of approximately 0.5 

u sec. 

4. Peak pulse currents variable from 0 to 1 ma. 

5. Residual beam between pulses approximately 0.0006 

percent of the peak pulse current. 

The above specifications were obtained from the Texas Nu­

clear Corporation instruction manual for pulsing systems (50). 

C. 400-Channel Analyzer 

The neutron flux as a function of time was recorded 

by the RIDL Model 34-12B transistorized 400-channel analyzer 

made by the Radiation Instrument Development Laboratory. The 

time analyzer was designed with a channel selector to provide 

50, 100, 200 or 400 total channels with any desired duration. 

In. its time mode it operates as though it were a large number 

of single channel analyzers. Each address channel becomes 

the equivalent of one single channel analyzer, with gross 

counting of input pulses through a controlled time period in 

each of the sequentially assigned channels. At the end of 

the time interval, the address is advanced to the next se­

quential channel. This operating cycle is advanced through 

the analyzer with a repetition rate determined by the product 

of the channel width and the total number of channels selected. 
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This means that the total time between pulses is constant, 

with any error in time divided by the number of channels 

that have been selected. The minimum cycle time for this 

operation is 10 yi sec. per channel. 

There is provision for the temporary storage of one 

count during address advance, thus providing an effective 

zero dead time when the probability of two or more pulses 

within the 10 m sec. time interval is small. 

D. Timer System 

For the operation of the channel analyzer in its time 

mode, an accessory time base control was used. This system 

is a Radiation Instrument Development Laboratory Model 88-901 

Timer System. It consists of a set of two single size modular 

units installed in a Designer Series Model 29-1 instrument 

case and power supply. These units are a Model 54-6 Time 

Base Generator and a Model 52-9 Time Mode System Controller. 

The Model 54-6 Time Base Generator furnishes pulses to 

the analyzer to provide channel advance. The timing provided 

for a channel width is adjustable from 12.5 u sec. to 800 

sec. The analyzer dead time is held to a constant 12.5 jj 

sec. for the shorter channel widths. A normal automatic 

cycle consists of a period of dwell time, the same period of 

dwell in the second channel, a channel advance, eto. This is 

repeated until the number of channels selected as a subgroup 
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in the analyzer has been used; then the analyzer signals 

completion of one sequence and the Model 54-6 may stop auto­

matically or it may repeat the sequence, depending on settings 

of its controls. 

The Model 52-9 provides an optional automo' p/oyram-

ming control for Model 34-12 and Model 54-6 combination. It 

permits the analyzer, operating in the time node, to be re­

cycled through a preset number of store cycles and then to 

be transferred to a read cycle for automatic readout or 

printout. 

E. Neutron Detection System 

The components of this system are two BFg proportional 

counters, a preamplifier, a linear amplifier and a Radiation 

Instrument Development Laboratory scaler. 

The first detector serves as a transverse detector in­

side the sphere. This detector is a Miniature Model Mn i, 

produced by the N. Wood Counter Laboratories. It is one-

fourth inch in diameter and one inch long. Its active length 

is about 2.2 cm. The filling gas is BF^ with 96 percent 

enrichment in The gas pressure is only known to lie 

between 20 and 60 centimeters of mercury. For protection 

against water, the detector was sealed inside a long lucite 

light pipe to be held by a clamp mounted on a vertically 

graduated aluminum holder. 
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The second BF^ neutron detector was used as a monitor 

for normalization purposes. The detector is about one-half 

inch in diameter and four inches long. The active length 

is about one inch. The detector was placed at a fixed po­

sition inside the shielded tank and coupled to a Radiation 

Instrument Development Laboratory scaler. 

At intervals during the series of measurements, the 

detector and the time analyser were checked by a Chi-square 

test for randomness and reproducibility. 

The spherical geometry was made possible by placing 

water inside round bottom pyrex flasks. Each flask was 

chosen to have the narrowest possible neck so that it would 

approximate a sphere when filled up to the neck with dis­

tilled water. The degree of sphericity of each flask was 

checked by comparing its average radius, as determined by 

volumetric methods, with the radius along the neck axis 

measured from the center to the water level. The two values 

were found to agree up to the first decimal. 

The flasks used have the following average radii: 

F. Spherical Containers 

Flask number Average radius 

1 17.025 ± 0.005 cm 

2 14.412 ± 0.005 cm 

3 10.830 ± 0.004 cm 

4 8.968 ± 0.003 cm 
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5 7.735 ± 0.003 cm. 

6 6.343 ± 0.004 CIT.. 

7 4.863 ± 0.001 cm. 

8 4.196 ± 0.0005 cm. 

9 3.553 ± 0.0003 cm. 

The spheres were held in position by placing them on 

cork rings lined with 20 mils cadmium to minimize scattering 

by the cork material. 

G. Shielding Facility and Detector Mount 

Figure 3.5 is a photograph of the rectangular tank en­

closure used to prevent room-return neutrons from entering 

the water system. The tank is supported by a wooden frame 

17.5 X 17.5 X 19.0 inch and lined from inside to the outside 

with a 40-mil cadmium sheet followed by a paraffin layer 1.25 

inch thick, 20-mil cadmium layer then an outermost layer of 2-

inch thick plexiglass. An opening just large enough for the 

target assembly was left in the middle of the side facing 

the drift tube. The top of the assembly was covered by sim­

ilar layers which could be removed to insert the sphere and 

allow the positioning of the traverse detector at a given 

source-sphere distance. 

The detector holder consists of an aluminum sliding 

bridge, a graduated vertical stand and a plastic sliding 

clamp for holding the detector. The bridge slides on alu-
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Figure 3.5. Shielding facility and detector mount 
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minunn rails in a direction parallel to the axis of the drift 

tube. The vertical stand is positioned at the middle of the 

sliding bridge and supports the detector clamp that can be 

moved in a vertical direction. Thus the motion of the 

detector is restricted to an axial and vertical direction 

with respect to the source. 
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IV. EXPERIMENTAL PROCEDURE 

To measure the flux distribution in a sphere along its 

Z-direction (the neck axis) it was necessary to locate the 

effective center of the detector. This was done by sliding 

the detector into a cadmium sleeve with a transverse slit 

0.2 cm wide. The position of the slit on the detector was 

recorded and the detector was then placed inside a paraffin 

block in a neutron field from Po-Be source. The count rate 

at the given slit position was taken and the procedure was 

repeated until the whole length of the detector v;as surveyed. 

The differential curve obtained by this method and corrected 

for the background is shown in Figure 4.1 together with the 

corresponding integral curve. This integral curve repre­

sents the total count rate as a function of the Cd-uncovered 

length of the detector. 

The differential curve is seen to exhibit an asymmetric 

Gaussian distribution. The position at the maximum of this 

distribution corresponds to the effective center of the de­

tector; while the full width at half-maximum was considered 

as the effective length of the detector. 

The average radius of each sphere was determined ac­

cording to the following procedure. The sphere was cleaned 

with chromic-sulphuric acid mixture and rinsed with dis­

tilled water, alcohol, and then ether. After evaporating 
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Figure 4.1. Determination of the effective center of 
the BFg detector 
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the ether in a dry air current and allowing the sphere to 

reach equilibrium at room temperature, water was added 

quantitatively to a level at which the tangent of the me­

niscus coincides with the spherical continuation at the 

neck. The transferal of water was carried out usine volu­

metric flasks and burettes standardized at 20°C. With the 

volume of water in the sphere known3 the average radius 

could be calculated. 

Each sphere containing light water was symmetrically 

bombarded at the equatorial plane by pulses of fast neutrons 

(see Figure 4.2). These neutrons were produced by the D-T 

reaction as described earlier in chapter III. The ion beam 

was constantly maintained at 600 microamps. Pulsing was 

carried out at a rate of 50 pulses per second, with a neu­

tron pulse width of 100 microsecond. 

The counts from the detector were recorded and stored 

in the 400-channel analyzer. One hundred channels were used 

each having a 25-microsecond channel width and a dead time 

of 12.5 microseconds. The monitor detector counts were re­

corded on the monitor scaler that served as a basis to nor­

malize each run to a constant pulsed source exposure. 

Measurements were taken at a detector position until 

the monitor registered a preassigned total counts. This 

ranged from 50,000 counts for the largest sphere to 120,000 

counts for the smallest one. The monitor and the 400-channel 
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i:L. 
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Figure 4.2. Experimental arrangement of neutron source, 
the spherical container and BFg detector 
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analyzer were then switched to the off position at the same 

time. The data stored in the 400-channel were automatically 

printed out by means of an accessory IBM typewriter. The 

detector was moved vertically to a new position and the 

procedure repeated until the accessible part of the z-axis 

was surveyed. The data were then corrected for the dead 

time and background. 
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V. ANALYSIS OF DATA, RESULTS AND DISCUSSION 

A. Parameters of Pulsed Neutron Experiments 

1. Determination of the decay constants for large spheres 

Consider M space points along the z-axis (see Figure 5.1) 

Then at time t^ (which corresponds to the midpoint of the kth 

time channel), one has M measurements of the neutron flux 

CO 

1 —u 

where 

^i " ^ - 0sis2,..., 
g 

2 2 
Bq = Bg = The geometric buckling. 

Using only N terms in 5.1, one has M equations of conditions 

and N + 1 unknown coefficients to determine 

o(ij,tk) = AQ(tj^)jQ(BQ,rj_) + Aj_(tjJjQ(B^,rj_) + 

+ Aj^( tk)jo(Bj^jri) 

atiw'tk) = Ao(tk)jo(Bo':M) + AlttkijofBl'rw) + 

+ AN(t^)jQ(B^;^^) (5.2) 

or, using matrix notation, 
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Figure 5.1. Flux maping along the z-axis of a sphere 
with Rj, = 14.46 cm and an average radius 
of 14.412 cm 
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X(tk) = w Aft^) (5.3) 

where X is a M-dimensional column vector, A is an (N 1 ) -

dimensional column vector and W is an Mx(N + 1) matrix. By 

pre-muitiplication- of both sides of 5.3 by (W^W) one 

gets 

Aft^) = (wTw)"lwTx(tk) (5.4) 

The harmonic amplitudes of the four largest spheres were 

obtained from 5.4 by the method of least squares (32). Ex­

amples of these amplitudes are shown in Figure 5.2 and 5.3. 

For amplitudes higher than Ag; oscillations with time were 

observed. They were found to be independent of the trunca­

tion order of 5.2. The occurrence of these oscillations be­

came significant for small spheres. The data in Table 5.1 

illustrates this phenomenon for a sphere with an average 

radius of 8.968 cm. From this table one observes the fun­

damental amplitude decreasing with time in an exponential 

way free from any oscillation. The oscillations appear with 

the first harmonic amplitude and increase with increasing 

order of the harmonic. 

There are two possible explanations for this unique 

feature of the spherical geometry. The first is the fact 

that the zeroth-order spherical Bessel functions have am­

plitudes that behave like 1/r and the count rate per unit 

length of a detector in a sphere is not symmetrically dis-
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Figure 5.2. Relative decay of the fundamental mode 
and the higher harmonics along the z-
axis of a sphere with R = 17.025 cm, 
R = 16.42 cm 
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Figure 5.3. Relative decay of the fundamental and 
the higher harmonics along the z-axis 
of a sphere with = 14.42 cm 
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Table 5.1. Oscillatory behavior of higher harmonics for a 
sphere with an average radius of 8.968 cm 

Channel 
number 

Ao(t) Aj_(t) Agft) AaC t ) A ^ i t )  

4 67622.69 -6493.60 1638.28 -112.21 -181.51 

5 46423.29 -2718.35 396.64 85.40 -25.68 

6 32480.63 -1653.73 513.06 40.33 -91.37 

7 22510.83 -801.09 449.31 -139.06 58.84 

8 15956.35 -290.89 288.42 -82.03 -45.4,1 

9 11216.57 -82.61 104.78 -5.16 25.82 

10 8119.30 -78.24 84.74 -23.30 -4.29 

11 5736.41 -96.42 205.52 -95.96 5.28 

12 4204.54 -5.86 43.13 -37.42 25.49 

13 3033.79 -84.15 48.65 -12.21 1.09 

14 2166.71 -24.69 21.98 -7.92 3.46 

15 1538.44 -15.48 -2.81 9.98 -3.33 

16 1133.28 -25.16 25.31 -9.82 -1.04 

17 764.18 -23.82 31.06 -8.03 4.31 

tributed about the effective center of the detrrt'' 

result} the detector does not behave like a point c.'j v-jc 

and would be, in a sphere, more sensitive to any variation 

with time than it would be in any other geometry. For the 

sake of illustration consider a sphere with an extrapolated 

radius and a slab with a extrapolated thickness 

Consider two similar detectors placed in positions as shown 

in Figure 5.4. For detector number 2 there is a zero net 

contribution from the two equal shaded areas on both sides 
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Detector 1 

Figure 5.4.a. First and second 
harmonic in a 
sphere 

\ 
O 
•-J 

De^ector""2 

Figuro 5,4.b. First and second 
harmonic in a 
slab 
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of its effective center. On the other hand, the net contri­

bution to detector number 1 is non-zero since the two areas 

are not equal. This implies; therefore? that detector number 

2 at that position behaves like a point detector; while num­

ber 1 retains the response of its effective length. 

The other possible explanation is the inefficiency of 

the expansion form given by 5.2. However, it will be found 

later that the method of this section gives fundamental de­

cay constants compatible with both theoretical and experi­

mental results obtained by other authors. 

In either case, it should not be taken for granted that 

these oscillations are inherent in the character of the higher 

amplitudes and, accordingly, that they describe the traveling 

wave phenomenon discussed before. Rather, there is a belief 

that if the expansion 5.2 is proper, these oscillations are 

mere contaminations, the degree of which depends on the order 

of the amplitude and the size of the sphere. In support of 

this idea is the fact that it is possible to isolate a portion 

of the oscillating harmonic amplitude that decays exponen­

tially with decay constant characteristic of the given harmonic. 

The data for the harmonic amplitudes, or selected por­

tions thereof, were then analyzed by means of the "Cornell 

Method" (10) assuming that, for the kth channel of width At: 

A^tt^) = A exp[-X^k(At)] (5.5) 
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where A is a constant and is the presumed decay constant 

of the ith harmonic. The method is summarized in that, for 

n channels such that n/3 = b is an integers is given by 

2b 3b 
s Ai(t. ) - Z A (t^) 

^ ^ lf=Oh+l ^ 1 , _ k=b+l 
= -bit -b-

k=i 

! 2b 

k=b+l 

( 2 . 6 )  

The variance of the fundamental decay constant was cal-

_culated by separately analyzing successive portions of the 

n-channel data utilizing four overlapping series of (n-3) 

channels each (l-(n-3)j 2-(n-2) and 4-n) or seven overlapping 

series of (n-6) channels each (l-(n-6)s ...s 7-n). This 

procedure takes into account the random distribution of the 

original counts about their best fit. 

In several cases there were uncertainties in the radial 

buckling along the z-axis as a result of the uncertainty in 

the water level at the neck of the sphere. In these cases 

more than one run was made with varying water level. The 

points of each run were treated separately using the above 

procedure. 

Values of Xq for the four largest spheres are listed in 

Table 5.2 together with both the average and the corresponding 

radial bucklings along the z-axis. It should be noted that 

the values of the fundamental decay constants are for the z-

direction unless it is otherwise stated. In calculating the 
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Table 5.2. Fundamental decay constants for the largest spheres. 
The space points used in the analysis are indicated 

R-/ o2^ 
g,av 

(cm"2)  

R^ ^0 
(sec."^) 

3 V 

(cm) 

o2^ 
g,av 

(cm"2)  

z 
5 11 

3 V 

(cm) 

o2^ 
g,av 

(cm"2)  
space 
points 

space 
points 

17.025 0.03270 16.420 0.0351 5706 (for 8% ) 

± ± 

5706 (for 8% ) 

0.005 0.008 5910 (for B^) 

14.412 0.04508 14.460 0.04500 64521207 64651200 

± ± 

0.005 0.006 

14.412 0.04508 14.400 0.04504 6457+215 64621203 

± + 

0.005 0.05 

10.830 0.07900 10.790 0.07960 7825+157 

± ± 

0.004 0.05 

10.830 0.07900 10.900 

± 

0.05 

0.07810 77981165 10.900 

± 

0.05 

8.968 0.1137 8.97 0.1137 90691240 — — — 

± ± 

0.003 0.03 

9 2 
Rgy and are the average radius and the average, 

buckling respectively. 

b o 
Rg is the radius measured along the z-axis and B is 

the corresponding buckling. 9 * z 
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the buckling, the extrapolation distances (24) were used. 

The decay constants for the higher harmonics are given 

in Table 5.3. For the sake of comparison, the theoretical 

values were calculated from 

X. = Xq + [(i + 1)^-1]D„B2^^ - [(i + (5.7) 

where ^ is the radial buckling along the z-axis, = 

38692 cm^ sec."^, = 4876 sec.~^ and C = 3618 cm"^ sec. 

These values are the P^-L^ values for the Welkin's water (see 

Table 2.12). The results are also listed in Table 5.3 from 

which it is clear that both the theoretical and experimental 

results agree with each other within 9%. 

2. Determination of the decay constants for small spheres 

The method used here to separate the fundamental mode 

decay from the higher modes is based on the determination of 

the optimum source distance and the waiting time. The source 

distance is here defined as the distance between the target 

and the facing point on the surface of the sphere (see Figure 

4.2). The ratio of this distance to the average radius of 

the given sphere will be referred to as the "normalized" 

source distance, s. Figure 5.5 is a plot of the ratio of 

the first and the second mode amplitude to the fundamental 

as a function of this distance. The plot is for a sphere 

with an average radius of 10.83 cm at the 8^^ time channel. 
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Table 5.3. Decay constants of higher harmonics along the 
z-axis of the corresponding sphere 

g2 Xj, (sec.~^) Xg (sec.~^) 

_2 Meas- Calcu- ^^1 % Meas- Calcu- ^2 % 
(cm ) ured lated (measured) ured lated Imeasured) 

0.0351 9425 10249 8.9 15324 16749 9.3 

0.0450 11120 11723 5.4 18660 19951 6.9 

0.0796 16020 16833 5.1 285Œ) 30747 7.9 

0.1137 20936 21739 3.8 37813 40753 7.8 

According to this Figure? s is about 0.4, i.e., double the 

value reported for rectangular geometry (34). Data for other 

channels essentially gave similar results. 

The waiting time is defined as that time required for a 

particular mode in a given sphere to decay to 1 percent of 

the fundamental amplitude. Use has been made of the data of 

the previous section to plot the waiting time t^ versus sphere 

average radius in Figure 5.6. The curves were then in­

terpolated to lower values of t^. The Figure shows that for 

radii less than 6 cm the waiting time is practically zero. 

Since the first mode can be eliminated to an appreciable ex­

tent by placing the detector at half of the extrapolated 

radius J the waiting time would be mainly determined by the 

second mode amplitude. 

The data obtained by the waiting time method were then 

fitted to the logarithmic difference of the counts in two 
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A2/A0 

-0.2 
0 05 1.0 1.5 

NORMALIZED SOURCE DISTANCE, s 

Figure 5.5. Relative harmonic content at the 8 time 
channel"as a function of normalized source 
distance, s 
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Figure 5.6. Experimental minimum waiting time versus 
average radius, 
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successive time channels. If the number of counts in a 

given channel is of the form 

= A exp(- Xgt^) + BG , (5.8) 

where BG is the background and assumed to be constant, then 

the difference between the n^^ channel and the (n + 1)^^ 

channel will not contain the background. The logarithm of 

the difference is 

ln(N^ - = -Xo^n+1 A( exp(-^QAt)-1 ) ) (5.9) 

The result is a straight line with a slope of \q. 

The fundamental decay constants obtained by the above 

procedure for five small spheres are tabulated in Table 5.4 

o 2 2 
where ~ The large variance in this table 

is probably due to the poor counting statistics for small 

systems. 

3. Determination of the diffusion parameters 

The usual fit of the experimental points to the function 

XQ = f(Bg), i.e., 

>^0 = + D„B2 - CB^ + OB^ (5.10) 

is done here according to the following procedure (19): 

consider 
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Table 5.4. Fundamental decay constant for small spherical 
geometries 

Radius^ 
sphere, 

of the 
R (cm) 

Buckling, 
\q (sec. -4 

7.735 ± .003 0.1470 10633 ± 155 

6.348 ± .004 0.2206 12896 ± 214 

4.863 ± .001 0.3651 18239 ± 362 

4.196 ± .0005 0.4810 22101 ± 460 

3.553 ± .0003 0.6553 28050 ± 810 

"R = Rav = «z-

? «1^0 = Vaor «1 * Oo? «iBg + C ; WiBg 
1 1 1 1 ^ 

f «iBgXo = Vo^ao f WiBg + Do f «i^g + = f «iSg 

f = Vao f «iSg ̂  Î ^ = f "1^9 (5.11) 

where W. is the inverse of the variance of and Z denotes 
1 ^ i 

the summation over all the experimental points XQ and the cor­

responding bucklings. The coefficient matrix, A, is given by 

ÏÏ . D„ 2. V'J . 
^ 1 g - 1 

,4 A = 

S W: 

f "i^g 

PiBg 

fWiBg 

f "iSg 

. 1 g 

f ®iBg 

(5.12) 
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The inverse elements s^^ are obtained by taking the cofactor 

of Im and dividing by the determinant det(A). 

cofactor of Im 

'Im det(A) 
1) m — 1) 2) 3 

1 he inverse matrix is denoted by 

- 1  

11 

'21 

'31 

'12 

'22 

'32 

'13 

'23 

'33 

(5.13) 

VoZao = =11 % *1^0 + =12 % + =13 % *1^0 2% (5.14) 

Dq s^i S + ^22 f '^i^O ^ ̂ 23 r ^i^O ^g 

^ S31 Z ^32 ? ̂i^O ^g ^33 v ^i^O °g 

(5.15) 

(5.16) 

1 he corresponding standard deviations are given by; 

(5.17) 

do = [S22 Z W.e?/(N 3)]% (5.18) 

i c  [Sgg  Z W^e^/(N 3)]% (5.19) 

where N is the number of points used in the least-squares fit 
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and = Xq (calculated) - Xq (observed) 

It was felt that the use of =1 yields a more real­

istic set of parameters for these reasons. 1) Large ge­

ometries were not perfect spheres and the radius along the 

z-axis differs from the average radius. This difference was 

small for small geometries. 2) Large spheres had wide necks 

and the water levels at these necks were flat. Hence, there 

is an uncertainty in the effective center of the sphere. 

3) A weighing factor equal to the inverse of the statistical 

variance of XQ tends to weigh more heavily the experimental 

points of large geometries. 

The procedure was applied to the data given in Table 5.1 

and 5.4. For spheres with more than one run only values of 

XQ that made the variance of C a minimum were retained. 

Table 5.5 summarizes the selected data for the best fit in 

the given range of buckling. Values of XQ for spheres where 

there is a large difference between the average geometric 

2 2 
buckling arid the radial buckling along the z-axis 

2 2 2 
are omitted from this table. For the rest B ^ = B^ _ = B^. 

gsav g,z g 

The results of the fit for various ranges of bucklings are 

summarized in the following: 

1. Fitting range from 0.045 to 0.365 cm 

^o^ao " (4.734 ± 0.036) x 10^ secT^ 

= (3.8892 ± 0.0442) x 10^ cmf. secT^ 
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Table 5.5. Experimental values of the fundamental decay con­
stant that give the best fit in the indicated 
buckling range 

Bg(cm"2) \q(sec."^) 

0.04504 6465 

0.07960 7825 

0.11370 9069 

0.14700 10372 

0.22060 13082 

0.36510 18323 

C = (4.590 ± 1.034) X 10^ cm^. secT^ 

2. Fitting range from 0.0796 to 0.365 cm 

^o^ao (4.767 ± 0.068) x 10^ secT^ 

DQ = (3.8570 ± 0.0736) x 10^ cmf. secT^ 

C = (3.940 ± 1.600) X 10^ cm^.  secT^ 

3. Fitting range from 0.045 to 0.2206 cm'^t 

VoSao = (4.718 ± 0.065) x 10^ secT^ 

= (3.9209 ± 0.1110) X lo"^ cmf. sec7^ 

C = (5.840 ± 4.039) x 10^ cm*. secT^ 

It is clear from these results that, at the time and 

are not sensitive to the range of fitting, C and its 
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associated standard error show a large variation. This re­

flects the usual inherent difficulty of determining the cur­

vature of an unknown function defined by a small set of ex­

perimental points having finite standard deviation. 

Values of the microscopic absorption cross section for 

hydrogen calculated on the basis of = 220,000 cm. sec.^ 

are as follows: 

or^ = 321 ± 2.46 mb » fitting range ; 0.045-00.365 cm 
3 

Cg = 323 ± 4.7 mb , fitting range : 0.0796-0.365 cm"^. 

The diffusion length L is deduced from the parameters 

by using the relation 

L 2 = . 

9 
where is found for the stationary state by solving equa­

tion 5.10 with \Q = 0. The result is 

(1 + (5.20) 
^o^ao DQ 

When equation 5.20 should yield values of L 

directly comparable to values measured by stationary methods, 

The values of L for two ranges of fitting are as follows: 

L = 2.887 ± 0.024 cm , fitting range: 0.045 - 0.365 cm 

L = 2.860 ± 0.030 cm , fitting range: 0.0796 - 0.365 cm 
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Table 5.6 shows a comparison between these results and 

those obtained by other investigators. The values of the 

diffusion cooling constant obtained here are lower than that 

obtained by Lopez and Seyster (34) and higher than that ob­

tained by Dio (20). The relatively large standard deviation 

associated with the present values of C are expected on the 

basis of the inherent difficulty of determining the spherical 

parameters and hence the expected uncertainty of buckling. 

The values of the other parameters are in fair agreement with 

those reported in Table 5.6. 

The fit of the experimental data to the expression 

>^0 = Vao V? - =4 '5.21) 

2 
was also tried. The values of By were calculated according to 

equation 2.52 by using 

= 38570 cm^ sec"^ (from the fit to \q = f(Bg)) 

= 3.34 cm ^ (for Welkin's water) 

Table 5,7 shows a comparison between the values of the param­

eters obtained from this fit and those from the previous one. 

This table shows; 

1. Within the experimental errors, the values of 

and are essentially the same for the two fits. 

2. There is improvement in the standard error of C. 

3. The value of C from the new fit is as high as 1.5 

times the value obtained from the other fit. 
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Table 5.6. Comparison between neutron diffusion parameters for water at 22°C by 
pulsed method. 

Reference D (cm^sec ^) C(cm^sec ^) a^(mb) L{cm) Range of 

Present work 38892 ± 442 4590 ± 1034 321 ± 2.46 2.887 ± 0.024 0.045 - 0.365 

Present work 38570 ± 736 3940 ± 1600 323 ± 4.7 2.860 ± 0.03 0.0796-0.3651 

Lopez and 
Beyster (34) 36700 ± 370 4852 ± 800 

Scott et 
al. (467 

Antonov 
et al. (1) 

Dio (20) 

38500 ± 800 

2.795 ± 0.016 0.014 - 0.018 

320 ± 8.0 2.850 ± 0.050 0.006 - 0.018 

35000 ±1000 4000 ± 1000 329 ±10.0 2.700 ± 0.100 0.09 - 0.93 

35450 ± 600 3700 ± 700 328 ± 6.0 2.715 ± 0.06 0.093 - 0.87 
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Table 5.7. Comparison between the diffusion parameters ob-
r\ 

tained from the fit to Xq = f(Bj) and those from 

Xp, = f(B^) for the range of buckling from 0.0796 

to 0.3651 cm 

Xo = f(B|) Xg = f(B2) 

V^Z (sec"^) 4770 ± 68 4767 ± 68 o ao 

D (cmf. sec'^) 38493 ± 722 38570 ± 736 

C (cm^. sec'l) 5861 ± 1540 3940 ± 1600 

The speculation that follows from these observations is 

that if the experimental values of the decay constant pre­

viously reported are fitted to equation 5.21 a reduction in 

the uncertainty of the diffusion cooling constant might be 

achieved. 

The question to be imposed at this point is> why the 

theoretical value of C obtained from the same expression 

does not agree with the value of the fit. The explanation 

for this is the fact that in calculating C its g factor given 

according to equation 2.47 was taken to be 1.776. This value 

is for two Laguerre polynomials. If higher polynomials could 

have been taken into consideration, g would have been equal to 

2.004, as reported by Perez and Uhrig (42), and one would have 

obtained a theoretical value of C more close to the value of 

the fit. Another reason for the discrepancy is the uncer-
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Figure 5.7. Least squares fit to data of the 
fundamental decay constant in spherical 
geometry 
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tainty of and the low order of approximation used in 

deriving Bj. To correct for the last factor one should use 

a more realistic model of the Boltzmann's equation like the 

approximation. 

The disadvantage of the new fit, therefore, is the strong 

link between theory and experiment and the fact that accurate 

theoretical predictions are prerequisite for the experiment. 

To put it more simply, the new fit requires accurate values of 

^2 and this so far is obtained from theoretical models. 

B, Extrapolation Distances of 

Pulsed Neutron Experiments 

The effect of the uncertainty in the extrapolated end 

points on the diffusion parameters extracted from pulsed 

source experiments was emphasized in earlier work {24, 34) 

and it was clear that more accurate measurements, especially 

in spherical geometries, were required. Beckurts (2) stated 

this need quite explicitly. The differences reported be­

tween extrapolated end points obtained by flux plotting in 

pulsed and steady state experiments also called for further 

investigation. Early pulse measurements in water at about 

20°C (8, 18) gave values in the range 0.4 - 0.46 cm which 

are well above the upper limits now indicated by steady state 

values (in the range 0.32 - 0.35 cm) (56). To help in re­

solving these inconsistancies further measurements have been 
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carried out according to the following procedure: 

A computer program was written to perform the least 

squares fitting of the extrapolation distance data to equa­

tion 5.4. A trial value, d^^^, of the extrapolation distance, 

d, was first found graphically from the flux plots. Values 

of d in the range from (d^^^ - 0.5) to (d^^^ + 0.5) cm were 

tried with an increment of 0.05 cm. In each case the ampli­

tudes (A^), the corresponding flux at the various space points 

and the sum (S) of the squares of the residuals were computed. 

The value of d corresponding to the minimum of the function 

S = f(d) (see Figure 5.8) was as the best fitted value for 

the given increment d. This value was then taken for d^^^ 

and the procedure repeated with smaller increment until the 

desired accuracy was reached. 

To take into account the statistical fluctuation of d 

with time, the method has been applied to data of five dif­

ferent spheres recorded at various times after the end of 

the fast neutron burst. The results of fitting to three 

harmonics are given in Table 5.8. A unit weighing factor 

was used in the analysis. The results generally show a 

relatively large standard deviation of d at both short and 

long time after the initiation of the neutron pulse. In 

the former case the deviation could be accounted for by the 

insufficiency of the three harmonic fit and the random dis­

tribution of the count rate about the best fit. The deviation 
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Figure 5.8. Variation of the sum of the squares of the 
residuals with the trial value of the ex­
trapolation distance for a sphere with R = 
14.46 cm ^ 
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Table 5.8. Extrapolation distances for 3 harmonie fit 

tmber 
of 
(here 

R; 
(cm) 

Number 
of har­
monies 

Number 
of space 
points 

Channel 
number 

*0 *1 ^2 
SxlO-4 d 

(cm) 

1 16.42 3 11 18 18179 -1481 212 13.94 .400 
3 11 24 5340 - 390 - 75 9.98 .415 
3 11 25 4126 93 -127 0.40 .380 

2 14.46 3 11 14 22308 - 717 -152 16.43 .291 
15 17894 - 506 -158 6.27 .333 
16 13934 " 244 - 82 4.65 .431 
20 5642 - 74 - 74 3.08 .373 

3 10.79 3 5 13 7070 62 -167 1.17 .365 
14 5311 27 - 11 1.37 .338 
15 3833 172 - 37 0.98 .347 
16 2986 148 .8 1.20 .356 

4 8.97 3 5 10 8083 21 36 .054 .340 
11 5625 200 73 . 36 .372 
12 4124 201 - 43 .016 .346 
13 3015 - 28 20 .005 .348 
14 2152 16 2.5 .023 .335 
15 1496 92 - 48 .003 .350 

5 7.735 3 5 5 37153 -2030 -1436 2.44 .352 
7 13900 - 466 302 4.72 .305 
8 11494 -1306 358 2.15 .370 
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at longer times would be mainly due to the statistical fluc­

tuation of the count rate data. 

To account for the effect of higher harmonics, the same 

data were fitted to an increasing number of modes until con­

sistent results were obtained. These results are listed in 

Table 5.9. The standard deviation shown is mainly statistical 

in nature and does not account for the uncertainty in the 

value of the radius along the z-axis. 

The boundary effect on d was not investigated. However, 

the space distribution taken for each sphere was such that 

points beyond a distance from the boundary of the order of 

one cm were excluded from the analysis. Hence, the boundary 

effect on the reported values is expected to be negligible. 

Recently Walker ̂  (56) measured d from flux dis­

tribution in pulsed cubical systems. They obtained values 

of 

0.38 ± 0.04 cm for = 0.087 cm"^ 

and 

0.35 ± 0.02 cm for = 0.25 cm"^ 

These values of d are in agreement with the present results. 
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Table 5.9. Extrapolation distances for water in spherical 
geometries at 22°C. The number of space points 
and harmonics used in the analysis are indicated 

Number 
of 

sphere 

R. 

(cm) 

Rav 

(cm) 

Bt . Number Number d(bf „) 
^^2 of space of har-

(cm~ ) points monies (cm) 

16.420 

± 

0.08 

14.460 

± 

0.060 

10.790 

± 

0.050 

8.970 

± 

0.030 

7.740 

± 

0.060 

17.025 

± 

0.005 

14.412 

± 

0.005 

10.830 

± 

0.004 

8.968 

+ 

0.003 

7.735 

+ 

0.003 

0.0349 11 

0.0449 

0.0794 

0.1129 

0.1510" 

11 

0.392 

+ 

0.05* 

0.356 

i 

0.45 

0.352 

+ 

0.012 

0.347 

± 

0.013 

0.338 

± 

0.033 

The error does not include the uncertainty in the radius 
along the z-axis. It is mainly due to the statistical fluc­
tuation of the value of d with time. 

This value was calculated using the value of R 
7.735 cm. 
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VI. SUMMARY 

A study of neutron thermalization in a sphere of light 

water was carried out both theoretically and experimentally. 

The theoretical aspect of the problem was dealt with utiliz­

ing the approximation. The space dependence was rep­

resented by the spherical Bessel functions of zeroth-order. 

The use of this representation made it possible to avoid the 

Fourier transform technique which strictly applies to infi­

nite media. The study employed values of the thermalization 

parameter, corresponding to the scattering kernels of 

Mass-lj Mass-18, Brown & St.John and Nelkin. When the time 

decay constant, X, was plotted versus the spherical Bessel 

p 2 
function variable, B , two limiting values of B were ob-

p 
tained. One was Bf below which all decay constants 

i. jiHaX 
2 were real and the other one was beyond which no real ^ ytnoA 

decay constants existed. 

The curve describing the fundamental time eigenvalue 
g 

in the (x, B ) plane had a negative curvature at the origin 

for all values of Mg investigated. The amplitude of the 

curvature increased with decreasing value of Mg. For Nel­

kin' s water, the curvature was in agreement with the experi­

mental results and in disagreement with the findings of 

Travelli and Calame (52) obtained from a 4-group treatment 

in the approximation. These authors found a positive 
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curvature for the Radkowsky kernel. 

The sensitivity to Mg was also observed in the limiting 

value, ̂ 2im* the fundamental decay constant obtained graph-
m 

ically from the (\) B ) plots. The values obtained were 

higher than the limit reported by Corngold and Michael (12) 

and lower than that obtained by Purohit £t (45) for the 

Doppler corrected kernel. for the Mass-1 kernel was in 

excellent agreement with that obtained by Ohanian and Daitch 

(41). 

The expansion of the fundamental eigenvalue, \Q, in 

power series of B was shown to have a radius of convergence 

that covers all the buckling ranges available to experiments. 

On the other hand, (the first eigenvalue) had a very small 

radius of convergence and its expansion in power series of 

B was shown to be questionable even for large geometries. 

The "buckling-dependence" of the diffusion cooling co­

efficient in the approximation was suppressed by expanding 

2 
the fundamental decay constant in power series of By, a slowly 

2 2 2 
varying function of B . The difference between By and B was 

correlated to the difference between the P^ and the diffusion 

approximation in the time dependent case. Values of the de-
r\ 

cay constant obtained from the function KQ = f(By) differed 

by no more than fractions of percent from the corresponding 

values obtained from the original polynomial given by 2.37. 

The thermalization time constant was obtained from the 
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limiting case of the transcendental quadratic equation in 

,  a s  B  =  = 0 .  T w o  c a s e s  w e r e  c o n s i d e r e d .  A  c a s e  i n  

which the transport mean free path varied as VË and another 

in which was constant. The values of t^^ for the latter 

case were about 4 times as large as the corresponding values 

for the energy dependent case. The result for Nelkin's 

scattering kernel was in good agreement with the experimental 

result reported by Moller and Sjostrand (37). 

The concept of buckling for spherical water systems was 

investigated and found to be valid as long as the fundamental 

decay constant, Kq, is less than about twenty thousands times 

the thermalization parameter, This concept broke down 

2 -2  
for the mass-18 kernel at values of B greater than 0.5 cm 

The neutron spectrum of the asymptotic distribution pre­

sented in this work exhibited the diffusion cooling phenomenon 

shown in the results reported by Clendenen (9) for the high 

order approximation. 

The space transient near the boundary and its effect on 

the extrapolation distance were studied. The transient effect 

was negligible beyond a distance from the boundary of the 

order of 0.5 cm. At the boundary the effect was determined 

by the neutron spectra. 

A calculation of the extrapolation distances for spheri­

cal geometry showed that the Marshak's boundary condition used 

for the outer boundary is not suited for this type of con-
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figuration and that it is desirable to work the problem in 

the "equivalent" slab geometry that suited the indicated 

boundary condition for the given order of the approxi­

mation. 

Pulsing data for nine spheres with a buckling range of 

0.0351 - 0.6553 cm'^ were obtained and analyzed by the method 

of least squares (32). The amplitudes of higher harmonics 

showed with time an oscillatory behavior. A possible ex­

planation for this phenomenon was offered. 

The data for the fundamental decay constant were fitted 

to two functions. \Q = f(3g) and XQ = f(Bj). Within the 

experimental errors, values of the absorption cross section 

and the diffusion coefficient obtained from the two fits 

were almost identical. On the other hand, the diffusion 

cooling coefficient C obtained from the first fit was much 

lower than that of the second fit. The new fit gave a rel­

atively improved standard deviation of C. 

The extrapolation distances for five spheres were ob­

tained by a least squares fit to the flux distribution in 

the pulsed experiments. The effect of higher harmonic con­

tamination on the magnitude of the extrapolation length and 

the rule of the flux variation with time on the fitted values 

were considered in the analysis. 
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VII. CONCLUSIONS 

Based on a comparison between the theoretical considera­

tions of this work and that of Travelli and Calame (52), 

it is concluded that the P^-L^ approximation, with a 

realistic scattering kernel for light water, predicts 

the time behavior in pulsed neutron experiments more 

accurately than few-groups approximation and that 

the diffusion cooling phenomenon is best exhibited in 

the continuous energy representation as was anticipated 

by Daitch and Ebeoglu (15). 

In case of light water, the usual expansion of the fun­

damental decay constant is justifiable on the basis that 

the value of buckling beyond which a travelling wave 

phenomenon occurs is of the order of 6 cm"^ (or even 

higher (15)). This value covers all the experimental 

ranges of interest. The same is not equally applicable 

to the first eigenvalue, a matter that leads to doubting 

the method of Purohit (43) in expanding this constant in 

2 a power series of B . 

Although the diffusion and the P^-L^ approximations might 

be identical in the time-independent case, they are dif­

ferent from each other when the time dependence is re­

tained. This difference can be correlated with that one 

between the geometric buckling and the transport buckling 
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The concept of buckling for a spherical geometry in the 

energy dependent case is valid as long as the asymptotic 

region is well established. This is not possible for 

small systems described by the Mass-18 gas kernel. 

The sharp variation of the effective buckling and the 

effective average energy of neutrons in pulsed spheres 

is due to the diffusion cooling phenomenon in finite 

media of light water as a result of the energy dependence 

of the transport mean free path. 

For reliable values of the extrapolation distances ob­

tained from pulsed spheres one must take into account: 

i. The boundary effect due to the transient distri­

bution. The effect of this transient is negli­

gible for space points far from the boundary by 

distances of the order of 0.5 cm. 

ii. The statistical variation of the extrapolation 

distance with time. This could lead to large 

errors especially at long times after the initia­

tion of the neutron pulse. 

iii. Effect of higher harmonics which could be serious 

for large geometries. 

In addition, the number and distribution of the space 

points used in the analysis. 

A BFg detector at a zero of a given higher harmonic might 



www.manaraa.com

137 

behave as a point detector in multidimensional systems; 

while in a sphere it does not behave the same. This is 

because the count rate per unit length varies along the 

effective length in case of spherical geometry. As a 

result, a detector in a sphere is very sensitive to any 

fluctuation that might occur with time in the flux dis­

tribution. A unique feature that has been observed in 

pulsed spheres is the oscillatory behavior of the ampli­

tudes of higher harmonics with time. The oscillations 

contribute to the difficulty in determining higher decay 

constants. Another inherent difficulty with these experi­

ments is the determination of the effective center of the 

sphere. This results mainly from the neck effect. The 

water level at the neck is flat especially if the neck is 

wide. Hence, the upper and lower halves of the sphere are 

not symmetric. The experiments also depend strongly on 

the exact determination of the effective center of the 

detector. Any uncertainty in finding its location is re­

flected in the radial buckling. In general, a successful 

experiment in spherical geometry requires: 

i. Exact location of the effective center. 

ii. A small BF^ detector. 

iii. A sphere for which the average radius is very close to 
the radius as measured along the z-axis. This, in turn, 
depends on the degree of the sphericity of the body and 
the diameter of the neck. 
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X. APPENDIX 

The computation in the theoretical chapter employed 

values of the total scattering cross section and the average 

of the scattering cosine obtained by McMurry et ad, (36), 

Table A.l and A.2 show a comparison between values for the 

McMurry-Russell model and those obtained from different 

sources. 

Table A.l. Comparison of total scattering cross sections.^ 

(bcr{E)/molecule) 

E(ev) Observed^ MR^ N-KY® KY^ FG^ 

0.002 200 202 210 224 206 212 
0.005 164 166 165 174 165 143 
0.025 107 107 106 105 105 86.2 
0.050 83 82 77.7 79 82 76.7 
0.100 70.1 67.3 69.1 70 72 67.1 
0.150 63.1 61.0 62.3 64 64 62.4 

a 
The data were compiled by McMurry et al. (36). 

b 
Data for E < 0 .1 ev are from Hughes and Schwartz (28). 

For E > 0.1 ev, data are from Beyster ̂  £l.. (3). 

^MR refers to calculations by McMurry, Russell and 
Brugger (36). 

refers to Welkin's model. 

®N-KY and KY refer to calculations by Koppel and Young 
(31) who used the Nelkin model and a model that corrects for 
the vibrational anisotropy. 

^FG refers to the free gas model. 
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Table A. 2.  Comparison^ of average scattering cosines (il) 

E(ev) Observed N N-KY^ KY^ FG^ 

0.002 0.017 0.035 0.023 0.101  
0.005 . 0.033  0 .048  0 .071  0.060 — 0.145 
0.025 0.140 0.180  0.190 0.180 0.160 0.258 
0.050 0.220 0.270 0.280 0.260 0.240 0.316  
0 .100  0.290 0.350 0.350 0.320  0.300 0.365 
0.150 0.340  0 .380  0.380 0.350 0.340 0.392 

®MR refers to McMurryJ Russell J and Brugger (36)  who 
compiled the data in this table. 

N-KY and KY refer to calculations by Koppel and Young 
(31) who used the Nelkin model and a model that corrects for 
the vibrational anisotropy. 

^FG refers to the free gas model. 

From Table A.l, it is seen that the Isl and MR calculations 

agree well with the experimental data. The MR model uses high­

er effective masses, and this accounts for the jl values being 

smaller than those of the N model. 

The absorption cross section used in calculating the de­

cay constant was obtained by Gelbard and Davis (24) for the 

Radkowsky kernel. In the quoted paper 

V^S^o - 4876 secT^ (for the calculation). 
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