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I. INTRODUCTION

The subject of neutron thermalization concerns the
manner in which the "neutron gas" comes into thermal equi=
librium (if it ever does!) with the medium which contains
it. Its analysis shows a nice interplay between theories
of neutron transport and theories of the solid and liquid
statey, and is also reminiscent of the classical kinetic
theory of gases. More precisely, it resembles the "foreign=-
gas" problem, where a small number of gas molecule$ is intro=
duced into a large collection of molécules already in equi-
librium at some temperature,

The thermalization problem might be compared with a
particularly simple, linearized version of the kinetic theory
of gases, were it not for the feature of chemical binding.

In all but the simplest models, the atoms of the moderator
interact with one another and the complicated motions which
result produce a complex scattering pattern in the laboratory
system,

Recently, the subject has assumed various and interesting
fields of neutron physics. One of these, which received ex-
tensive theoretical and experimental considerations; is the
field dealing with the integral part of the thermalization
problem and which is the main interest of this thesis. 1In

the integral experiments the concentration is on the temporal



change of the energy=-integrated flux rather than on the
details of neutron spectra,

The most eminent technique for these experiments is
the pulsing technique introduced by Von Dardel (54), The
theory behind the method is summarized in a consideration
of a burst of fast neutrons injected in the moderator. When
a sufficiently long time has elapsed after the initiation of
the pulse the flux decays as exp(=At) where ) is the decay
constant. A semi=-log., plot of the flux, obtained by a *1/v*
detector, versus.time should give a straight line with a
slope equal to =A\.

von Dardel and Sjostrand (55) found that A\ could be ex-
pressed in terms of power series of the square of the geo=

metric buckling, BE:
2

D B2 c 4
°g g9

where a is the decay constant which would be observed in an
infinite medium, D, is the diffusion coefficient and C is

the diffusion cooling constant thaf describes the cooling
phenomenon due to the preferential leakage of the high~energy
neutrons from a finite medium. Nelkin (38) has obtained these
coefficients by a variational approach. He used the "neutron
temperature" as a variational parameter. Singwi (48), and

Purohit (43), applying the diffusion approximation, have.de-

termined Do and C with the help of the Laguerre expansion.



The experimental values of a and D  were obtained with
goed accuracy and the values measured by different experi=-
menters are in agreement with each others and with the sim=
plest model of diffusion theory. On fhe other hand, the
data reported for C showed large discrepancies.

All pulse data available today have been obtained from
multi-dimensional systems whose methods of analysis are, un=
doubtedly, complicated. To help in resolving the inconsiste
encies of the experimental values of the diffusion cooling
constant, further work with spherical geometries is needed.
This need has been emphasized by Gelbard et al. (24) because
this shape would be amendable to theoretical interpretation
and might yield more information on the thermalization param=
eters.

The purpose of this thesis is to study the feasibility
of pulse experiments in spherical geometry. The study is
based on both theoretical and experimental investigations.
The former is treated in Chapter II while the latter is dealt
with in Chapter V.

The theoretical model of the present work is the Pi=Ly
approximation developed in section II~A, In the next section
the eigenvalue problem is defined and the behavior of the de=
cay constants, as functioﬁs of the space eigenvalues, is stud-
ied. This study is felt to be of interest for two reasons.

First, Travelli and Calame (52) pointed out that the plot of
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the fundamental time-eigenvalue, as obtained by a8 4-group Pl
approximation, versus the space eigenvalue gave a curve with

a positive curvature at the origin in disagreement with the
experimental results. The study is aimed to clarify the na-
ture of this contradiction. Second, some understanding of

the eigenvalue spectrum is needed to test the feasibility of
the commonly used expansion of the decay constant in power
series of the geometric buckling. The results inferred from
this study are used in verifying the treatmeni in section II-C
where the various diffusion parameters are derived,

In section II-D the space-energy dependence of the eigen-
functions is examined together with the concept of a unique
buckling. Equations for the computation of the diffusion-
cooled neutron spectra for the asymptotic and the transient
distributions are developed. These equations are made use
ofy in section II-E, to calculate the spectrum-weighted aver-
age energy and effective buckling for a sphere.

The space-dependence of the extrapolation distances for
a spherical geometry are compared with those of an "equiva=-
lent slab" in section II-F. The Marshak's boundary condition
is used for the system-vacuum interface,

In the experimental part two different investigations
of the die-away experiments are described. Section V-A deals
with the determination of the diffusion parameters. The ex-
trapolation distances for five spherical geometries are de-

termined in section V-B,



II. GENERAL THEORY
A. The Py-L, Equation in Spherical Geometry

1. The Pl equation

The source-free integro-differential form of the Boltz-
mann transport equation describing the time, space, energy’
and angular dependence of neutron flux in a sphere of homo-
geneous materials is

L d3o(r,Esust) + 3o(rsEauat) + {1 - U.Q) 30({r Esuat)
Vv 0t H 31 r 3p

1 '
+ Ipe(ryEspat) = erj ! js' Zs(po,E'*E)e(r,E',p',t)dp'dE
(2.1)

where

It

¢(ryEypst) The angular flux

The scattering kernel

ES(HO’E'*E)

It

XS(H'*H’E'*E)

Direction cosine

1

It

The solution of 2.1 should be made to satisfy the usual

I

Total macroscopic cross section

boundary conditions of transport theory, namely:

a. The neutron flux must be finite and non-negative
in all regions of the medium since the medium con=-
tains no sources.

b. At the outer boundary, which faces a vacuum, there

must be no neutrons returning to the medium from



the vacuum,

Since ¢ (ryEsu,t) is time dependent, an initial condi-=
tion must also be stated to solve the problem completely.
However this study is concerned only with the relative be-
havior of the angular flux as a function of the system size
and some reference time; hence the complete solution of the
problem is not required.

The angular dimension of 2.1 may be removed in the usual

manner by expanding the angulaxr flux and the scattering ker-
nel in Legendre polynomials

@(I’E’}L,t) =T igm:i_il ¢m(r,E,t)Pm(}L) (2-2.3)
m T :

Es(po,E'dE) =3 {om + 1) s (E'*E)Pm(p

pimedl s ) (2.2.b)

This yields, after the insertion of the angular expansion,
making use of the addition theorem of Legendre polynomials,

multiplying through by Pn(p) and integrating over =1<u<l:

(n+ D[ + 02203 (,E,t) + al - 8230 (n,Et)

n+ 1

+ (2n + 1)[(2T + % g%)on<r,s,t) - Snon(r,E',t)] =0 (2.3)

-where n = 04142,...N for an Nth order angular approximation,



©0
S 6 (1,E',t) = JE'=O;;sn(E'*'E)¢n(r,E',t)dE' (2.4)

and

Q_l(r,E,t). =0

By direct substitution, it can be shown that the solution

of 2.3 is of the form

o (r,Est) = Fn(B,E,)\)jn(Br)e"}\t ¥ Gn(B,E,;\)nn(Br)e”\‘t (2.5)

th

where jn(Br) and nn(Br) are the n-'' order spherical Bessel

functions of first and second type respectively. The parum=
eter B is a space eigenvalue and ) is a time eigenvalue,

The asymptotic limits for spherical Bessel functions with
small arguments are:

. (Br)"
B
Jn( r) 0 1°3°5°**(2n + 1)

A 4

l0305000(2n + J_.l
I‘..,O (Br)n + l

Y

nn(Br)

Since nn(Br) contains the argument in the denominator
of its limit, it is seen that it would violate the first
boundary condition, while jn does not. Therefore the arbi=-
trary constant Gn(Br) must be set identically equal to zero

and én(r,E,t) becomes:

°n(r35’t) = Pn(B’Eyk)jn(Br)eakt (2.6)



The substitution of on(r,E,t) as given by 2.6 into 2.3

gives a set of N + 1 homogeneous coupled equations relating

th

the F_ 's for an N"" order approximation:

(n+1)BF,,;(ByEsA) = nBF__ (ByEsh) + (2n41)[ (5 = B)F_ (B,E,0)

n+l

'snFn(B,E'gk)] =0 (2.7)
In the P, approximation, this set takes the form

BﬁﬂByEsk) + [(ET - %)FO(ByE’K) - SOFO(B,E"K)] =0 (2.8.a)

~BF(B,E,\) + 3[(x; - %)Fl(B,E,x) - $;F;(ByE",\)] = 0 (2.8.b)
The Pl component of the scattering kernel can be ap=

proximated by

2, (E"™E) = p(E)s_ (E'E)s(E'=E)

“sl
where 4(E'~E) is the Dirac delta function and g is the average

of the cosine of the scattering angle.

With the above approximation the integral SlFl becomes
S,F(ByE'\\) = = (E)pF;(ByEjsN) (2.9)
The substitution of this expression into 2.8 gives

F1(ByEsN) = BFG(B,EN)/3(5pg = §) (2.10.8)



[B2/3(s;5 = 8) + 2p = 3IF (ByEsA) = SgF(BsE' sA) (2.10.b)

where

Zrg(E) = 2,(E) + 2, (E)[1 - g(E)] (2.11)

The set 2.10 is closely related to that obtained by
Nelkin (39) and Veértes (53) for an infinite slab using the
Fourier transform. However, the above formalism has an ade=
vantage over Nelkin's; namely, the Fourier transform implies
an infinite medium., By finding the set of eigenvalues of

2,.10:
Bo’Bl"""Bk

one can write down the total solution of 2.8 which will satisfy

the boundary conditions of a finite sample.

2. Limiting value of the decay constant

According to Corngold and others (11-14) the discrete

eigenvalues of the decay constanty A\, are limited by

Mip, = (v 2.12)

s,in>min.

where Z is the macroscopic inelastic scattering cross

,in.
section for neutrons of speed V. The minimum theoretical

value of Vzé’in occurs for V =+ O, and for water it is close
to 300,000 sec."l. As Corngold and Michael (14) pointed out,

the experimental values of the fundamental decay constant



10

exceed this limit in many cases. This means that if the
experimental points are correct, they stand in direct con=
tradiction to rather direct consequences of the Boltzmann
equation, It is perhaps more reasonable to look at the
problem from a different point of view,

In 2.10.b, FO(B,E,x) is recognized as the energy com=
ponent of the scalar flux at a given B and \. For this com~

ponent to be real and finite the following should hold.
2 - A =
A< [VB2/3(2pg = §) + V(Z + za)]Eo Mim. (2,13)

where EO corresponds to the energy at which the quantities

in brackets are at a minimum, Equation 2.13 explains why the
experimental decay constant exceeds Corngold's limit in some
cases., In case of water, however, both the absorption and
the transport cross section behave like 1/V for small V and
2.13 would reduce to Corngold's limit as VO provided that

(VES)E is recognized as (VI
o

From the foregoing one concludes that klim is a sepa=

D
syin, Eo

rating point between two types of spectra:
8., A discrete set of eigenvalues and a corresponding

discrete spectrum of eigenfunctions in the range

k<xlim,
b. A continuum of eigenvalues in the range

ANlim.



11

The corresponding eigenfunctions are given by

= o]

E (ByE,\) = P[ 7 %o (B E)F(ByE' )\ )dE!
o\B9ky (BQ/B(ETR - 6) v I, - %)

2
+ Q(X)b(h -3+ - (2.14)
VoIT ez - B

where P implies the principal value of the integral when the
denominator appears as the integrand. The delta functions
give the contribution of singularities other than the poles,

By the principle of superposition, the solution of the

Pl equation becomes

Mo st b -\t
on(TsEat) = 5 (BD)Z Foi(ByEsle ™+ [~ F (BEM)eMar)
1=0 Alim.

sn = 1,2 (2.15)

where M stands for the number of the discrete eigenvalues
and the integral gives the contribution of the continuum.
Only for a proton gas case does there exist a satisfac=
tory discussion of the character of the time eigenvalués as=
sociated with the energy modes,vas given by Corngold et al.
(14).
According to these authors the number of discrete eigen-
values between zero and Ajj., 1is infinite for an infinite

medium. Shapiro (47) has obtained extensive numerical results
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for the existence and convergence of discrete eigenvalues
for the monatomic gas model. Numerical results for the
eigenvalues of the bound proton model have been obtained by
Ohanian and Daitch (41) using the diffusion approximation,
The quoted paper indicated that the first eigenvalue always
exists for a finite medium. There are also strong indica=
tions that there is always at least a second eigenvalue even
though it may lie close to the limiting decay constant., Re=
cently the thermal neutron space=-time eigenvalue spectrum of
the multi~-group PN approximations were invéstigated numeris=
cally by Travelli et al. (52), for a modified form of Rad~
kowsky kernel. Both discrete and continuous eigenvalues were

found.

3. Expansion of energv eigenfunctions in orthogonsl polv=-

nomials

Expansion of Fn(B,E) in a complete set of orthogonal
polynomials allows the solution of the eigenvalue problem.
The choice of these polynomials is arbitrary. The Laguerre
polynomials have been used widely, as they are the exact ei=-
genfunctions of the Wilkin's heavy gas scattering operator.

Let

n

§= M(E)Fnk(B)L(l&(E), (2.16)

F,,(B,E) .

|

s_(E)

2 ZaOAQ@T(l/V absorber) (2.17)
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ETR(E) = ZTRQ/VE-(I/V transport cross section) . (2.18)

A

and

V = VOVE (2.19)

where E is a dimensionless energy variable expressed in units

of KT,

M(E) = Maxwellian neutron distribution

= E e"F (2.20)
Lk(l)(E) = Associated Laguerre polynomials of first
order
- (k+l)%%;o PT(1 i'é%??i T E (2.21)
an = Absorption cross section at room temperature
zTRo = Transport cross section at room temperature
V0 = Neutron speed at room temperature

2.2 X lOscm/sec.

By rewriting the scattering cross section in the inte=~

gral form
= - 1
z o (E) fozso(s E)dE (2.22)
and substituting 2.16 through 2.22 into 2.10, one gets

. 2 1
E_ UV E B%/3(V 200 = N) + OV, = 2, (eI E)(E)
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+ ‘[:(L(IQ(E')M(E')ZSO(E34E) - L(l&(E)M(E)ZSO(E E'))aE' JF X (B)
-0 (2.23.3a)
Z_M(ENE(B) = VBRG(B)/3(VyZrg, = ANEUNE) = 0

(2.23.Db)

According to the dztailed balance theorem of statistical
mechanics,

% (E')M(E')H(E'"E)

SO

M(E')ESO(EL~E)

2 o (EIM(E)H(EE") (2.24)

where H(EME)dE is the probability that a neutron suffering
a scattering collision at E' shall have an energy E in dE,
By expanding

2P

l ' _ l dp (l) | I
L) (e = i)z + z EEPK(E) \E = =

and using the above results, the scattering terms can be ex-

pressed as a sum of energy transfer moments:

‘[Z[L(lz(E')M(E')ZSO(E'*E) - L(l&(E)M(E)zSO(Eﬂﬁ')]dE'

P, (1
=3 ;% Q-EEE%iEI M(E)Z, (E)A(E) - (2.25.a)

pP=1
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AP(E) = j‘ (E' = E)pH(E‘*E)dE' (2.25b)

_ pth

energy transfer moment
By substituting 2.25 into 2.23, multiplying through by

L(li(E) and integrating over E, one gets

o 2 k _
f=o[tik8 /3 + (K/vo)wik + Fik]Fo (B) =0 (2.26.a)
i,y _ B2® K
Fy (B) = 7;§=OtikFo (B) (2.26.b)
where
ti = VOJ”;[Jﬁ'M(E)L(lg(E)L(li(E)/(Voztro - K)JdE
= Vv / (VB o = Ky (2.27)
Qik = .[:JE—M(E)L(lz(E)L(l&(E)dE
Ztro = zTRo - zao

n

Transport cross section for zero absorption

=201 =) (2.28)
Wi = f;?l/VE )M(E)L(lg(E)L(li(E)dE (2.29)

K =N = VI (2.30)
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w(E)LL) (B)z, An(E)] | (2.31)

Some values for w.

ik and Vig are listed in Table 2.1 and

2.2 respectively.

Equation 2,26 is the P,-L, equation in spherical geom~
etry. For the Ll approximation it reduces to

2 0 2 1 =
(tooB“/3 = Kwoo/V )Fy (B) + (tg,B</3 - Kwy/V )Ey"(B) =0

(2.32.a)

2 0 2 ' 1 _
(thB /3 = KW01/Vo)Fo + (tllB /3 = Kwy/V, {_]Ell])FO (B) =0

(2.32.b)
0 _B 0 1
Fi (B) = 5{tyoFy (B) + t5,Fy (B) (2.33.3)
1 _B 0 1 -
where
Fip = =My/4 (2.34.a)
_ [P 1% e L e12p (E) i
M, = ~[o-[o(E E)R o 'M(E)H(E™E')dE'dE (2.34.Db)

Second energy transfer moment.
Equation 2.32 is a set of homogeneous equations. The

roots of the characteristic equation are the possible values

of BZ.
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Table 2.1. Values®of Wi

Yoo wo) w02 %03 i1 W12 W13 oy

&

0.8862 0.3134 0,1919 0.1384 0.7754 0,3392 0.2252 0.7061

®From Purohit (43).

Table 2.2, Values of Vik

Voo Vol Vil

1,330 -0.471 1.828

For other values of Vik use is made of the relations

Vik = Vool (WixMoo) = Tigdr Ty = Llwy/wog) = vy /vgol]

Table 2.3. Values® of Ty,

Too  Tor Too To3 111 T12 T13

0.0 0.7071 0.2887 0.1882 =0.5505 0.8674 0.3540

3From Perez (42).
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4. Matrix elements and associated integrals

The success of the Pl-Lk equation in interpreting the
experimental data depends on how accurately the matrix ele=
ments Fik of the scattering operator are determined. For
Pl-Ll, only the element Fll is required.
‘The elements can be obtained from the related energy
transfer moments Mkp or their associated integrals,
Nelkin (38) was the first to introduce Moy OT (M2) in
estimating the thermalization parameters, by the use of
variational principles. Using the detailed balance theorem,
Purohit (44) gave recurrence formulas. |
The values of the energy transfer moments depend on the
scattering model used. For water, four models are tried in
this thesis. These are:
a. Hydrogen gas: The motions of the protons in water
are like a free gas (58) with no binding between
protons and oxygen. .

b. Mass-18 gas: The water molecules are considered as
rigid structures and replaced by-a gas of point par-
ticles with mass 18.

¢c. Brown-St.John (6): The water molecules are treated
as rigid structures free to rotate. The rotator is
then replaced by a free point particle with an "ef-
fective rotational mass" of 1.88. The model util~

izes a trial cross sectlon that contains adjustable



The

mentioned models is listed in Table 2.4. In 2ll these case

& free ga

19

parameters so that the computed scattering cross
section can be fitted to the experimental cross
section.

rotons

The Nelkin water (40): The dynamics of

ke

in water are described by three harmonic oscilla-

<

torsy two for the vibraticnel levels a2t 0.205 ev

and 0.48 ev and one for the hindered rotation at
0.06 ev. The motions of the molecules are described
by a mass~-18 gas.

second energy transfer moment, Mz, for the apove

s kernel with mass 16 was considered to approxima

the scattering from oxygen.

Throughout the remainder of this work, whenever there is

a choice

among the above modelsy, the Nelkin water model will

be the one selected., This is justified on the basis that thi

kernel predicts infinite medium spectra in good agreement wit

spectra measured by Beyster (5) over a wide range of poison

types and
efficient
values me
sons of t

at al. (2

s

LY

)

concentrations. The kernel also gives diffusicn co=

s and cooling cocfficients in good agreement with
asured by Star and Koppel {(49). Detailed compari-
e Nelkin kernel with measurements by Eglestafs

1) have been made by Goldman and Federighi (25).

They found reasonable agreement between the theoreticsal

predictions of the model and the experimental results at
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Table 2.4, Second_energy moment of the isotropic scattering
kernel®

2

= ® lﬁg t { P - ' ]
| M, fo»‘ OM(E )zso(z-:' JH(E*™E)(E - E')“dEdE
-1
Kernel Mg(cm )
H gas 3.85
Mass 18 0.67
Brown & St.Jjohn 5.23
Nelkin 3.34

8From Honeck (27).

all but small values of energy and moment transfer. For-
tunately this region contributes little to the total cross
section o# to the energy transfer moments. Finally, the
Nelkin water gives a total cross section over the entire

thermal energy range.

B;_ Time Eigenvalues
A study of the eigenvalue spectra in the multigroup PN
approximationé (15, 52) indicated the possibility of a travel-
ing wave phenomenon at large bucklings. This work is extended
here to the Pl-Ll.approximation for two reasons. First, Tra-
velli andCalame (52) pointed out that the fundamental eigen-

value curve in the (N> 82) planey, in a 4-group Pl approxi-
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mationy, contradicts the experimental results in having a
positive curvature at the origin. This study will explain
the nature of this contradiction. Second,y the split of
energy into few groups does not reflect the usual diffusion
cooling phenomena (15). The diffusion cooling is obtained
in the continuous energy representation by expanding the
lowest eigenvalue in power_series of 82. The radius of con=-
vergence of this expansion is evaluated by a knowledge of
the eigenvalue spectra.

The eigenvalue problem relevant to this study is

(t0082/3 - Kiigg/V,) (tOlaz/s - Kwg/V,) FOO(B)
(t,,8%/3 ~ Kwg Vo) (T B%/3 = Kwy /Vo + IF14) Fol(B)
(2.35)

Since equation 2,35 consists of two linear homogeneous
equations, the eigenvalues are fixed by the condition that

the determinant of the coefficients must vanish,y i.e.,y by

the equation
Q(K,B2) = (t..B2/3 - Kw o/Vo) (¢ B2/3 « Kw../V_ + Fi.)
, 00" S ALIARE 117V + Fuf
- (thBQ/S - KWOl/VO)2 =0 (2.36)

where K is related to A by 2.30.
The function Q(K,Bz) is a polynomiai in 8% of degree 2

and for a fixed B2 it is a polynomial of degree 4 in K. 1In
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general, for a PN-LM approximation there is a polynomial

of degree YM(N + 1) in B2 and of degree M(N + 1) in K,
The expansion of 2,36 gives

4 %)

2y _
Q(K,B“<) = 3K Woo%11 " Yol

3 2
3KV (28 o (wogwy) = wo1™) + woo [Frg ]

2. 2:.2
+ KV E[B (v wog = 2vg Wo1 + VooW11)

+ 382 (woawi, = ow 2) + 6%, wWan [Fqiq ]
‘tro' 00711 0l tro OO[ lﬂ
- KV 3[? BQ(V Wan = 2VAWay + VAAW, ;)
o tro® “V11%oo 01%o1 * Yoo*11

2 2
+ [F1] (3%iro%o0 * BVgo)]
+ BV 4[-52(v Vi o= v 2) 4 8. v lFi ] ] =0
o *3 '"00°11 0l “tro OOI lﬁ
(2.37)
First estimates of the roots of Q(K,BQ) were obtained
by plotting this function versus K at specified values of B2.
Some of these plots are indicated in Figure 2.1. These roots
were then taken as first trial values in Newton Raphson method
(33). Iterations were carried out on the IBM=360 computer un-

til the desired accuracy was obtained. Values of the various

cross sections used in the numerical calculation are given in

the Appendix.
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A study was made using the four scattering models
listed in Table 2.4. The results are given in Table 2.5,
2.6y 2.7 and 2.8. The corresponding curves are shown in
Figure 2.2, 2.3y 2.4 and 2.5 respectively. For the sake
of comparison results obtained by the diffusion theory ap-
proximation are also listed in tﬂe respective tables. These
tables show a number of features of interest:

a. The diffusion approximation gives only two eigen=-

values compared to 4 in the Pl-Ll approximation.
This is because the latter approximation has the
form of the telegrapher's equation (57) and differs
from the diffusion equation by an additional térm
containing the second order time derivative.

b. The diffusi&n theory curves indicate that the de-
cay constants increase indefinitely in direct pro-
portion to B2 and are always real. This behavior
stems from the linear relationship between 82~and K.

For the Pl-Ll approximation, on the other hand,

there exist two limiting values of BZ, B% and
yMmax,
2 L
B2,max. such that:
i For 82 < 82 all eigenvaluesy K; are real
: l,max.’? 9 y .
ii. For B2 > Bg,max.’ all eigenvalues are complex,
iii For 82 < B2 < 82 two real eigen-
y 1,max. 2 ymax., ’ 9

values exi;t.
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Table 2.5. The tabular entries give the decay constants in
(microseconds)~l for Mo = 0.67 cm~l, the buckl-
ings and theories indicated

Pi-l Diff. Theory
B2 Ky K, Ky Ko Ky
0.0Cm™2  .000000 .05342 .6216 .6286  .000000 05342
.025 .000958 .05812 .62080 ,62712 .000949 ,05787
.09 .001898 .06067 .62000 .62500 .001878 .06014
.10 .- - .6163 . 62150 - ——
.20 .007218 .07698 .6022 .6214 .007089 .07414
.30 .01530 .08883 .5992  .6177 .010295 .08374
.40 .013920 .09923 ,5762 6152 - -
.50 .016790 .11508 .56310 ,6120 016278 .10336
.70 022757 . 14560 ,5309 .6078 .021883 ,12337
.90 . 028576 . 18256 - —— 027249 ,14361

1.0 .032960 .20410 ,4698 .6046 - -

2.0 . 060563 =-%% - . 5728 .054918 .25680

3.0 .092150 -%% %% . 5420 .079094 36068

4,0 127241 =% - . 5057 -—— -

5.0 .173318 -3 - L4612 126717 .56916

6.0 . 240806 -3 - . 394 150387 .67354

7.0 - - -XH -¥¥ - oo - o

- .50 -.024300 .01600 ,676 .6377 -.025918 .01751
-1.50 -.09700 -,01900 .7629 .658 -.116506 =.01996
-2.0 -.132500 <~.03100 .8011 .67 -.167261 -.03323
-2.9 —e- -.04250 ,8327 . 6808 -,218704 -,04581
-3.0 ,-- -,05300 .8663 @ ,691 =,270457 .05809

**The root has a complex value,
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Table 2.6. The tabular entfies give the decay constants in
(microseconds)~t for Mg = 3.34cm-1, the bucklings
and theories indicated

' Pl-Ll Diff. Theory

2 -
B KO Kl K2 K:3 KO Kl

0.0cm™2  ,000000 .27642 .62150 .63000  .000000 .27642

.025 .000967  .28052 --- --- .000958 .27866
.050 .001933  ,28474 ,61570 ,62500  ,001912 .28091
.100 --- --- 60670 ,62330 -—— ---
.150 .005780  .30299 --- -—- .00%684 .28994
.200 .007686  .31314 .58650 ,62050 ,0075%45 29449
.300 .011512  ,33642 ,56200 .61720 ,011220 .30362
.400 --- ---  ,53050 .61450 -—- ---
.500 .019089  ,42126 --- --- .018393 .32705
.700 . 026609  d %% 60680 ,025350 ,34071
.900 .034087 -k - - .032115 .35955
1.000 e - %% ~¥% 59875 --- ---
2.000 .075289 S -%* 56880 ,066690 .46584
3.000 .114870 -%% -*% 53450 ,095517 .56506
4,000 --- - -%% 49340 --- -—-
5.000 .219162  -%x -%¥% 43770  ,149238 .76745
6.000 - - % -%¥% 33000 ,174970 .86977
7_000 - -t - ¥k - - - -
-0.500 -.017400 .,21180 .69810 .63840 -.02018% ,23258
=1,500 -,061500 .12470 .80190 .66170 =~.068173 .1%251
-2,000 -.083600 ~==  ,84430 ,67290 ~-,097122 .11744
-2.500 -.106300 .06780 .88250 .68370 =~.12985 ,08614

**The root has a complex value,
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Table 2.7. The tabular entries give the time eigenvalues,
Ky in (microseconds)™* for M, = 3.85 cm~l, the
bucklings and theories indicated

P -Ll ' Diftf. Theory
Ky Ky K3 o K1

2 :
B KO

.Ocm.2 0.000000 31394 ,62250 ,62730 .000000 ,31394

.025 .000967  .32836 .61931 ,62584  ,000958 ,32104
050 ,001934  ,33321 ,61500 .62350 ,001913 ,32328
. 150 ,005791  .35477 .59413 .62184 com -e-
.200 ,00771%  ,36729 .57670 .62001 ,007563 .33684
. 300 .011553  ,39864 ,54640 61710 .0Ll1258 34595
. 500 .019200 s -¥% 61200 ,018492 .36433
.700 .026817 - -%% 60672 ,025532 ,38290
.900 .034418 - %% -*%  ,59985  ,032396 ,110164
2.000 076627 - %% -¥¥% 56812  ,067665 .50723
3.000 .117461 O -%% 53350 ,097155 .60580
5,000 . 226681 e -%% 43211 ,151995 ,80706
6.00 e o e N .178175 .90893
- .500 -.019800 ,25091 .70400 .63750 -.020044 27481l
-1.500 -.061900 ,15550 .81210 .66200 -.066462 ,19318
-2,000 -.081400 .12250 .8%600 .67320 =-.093730 15642
-2.500 -.10300 .09810 .89460 ,68400 =.124179 .12284
-3.000 -.125500 .,07102 -—-  ,69409 ~-,157929 ,09257

**The root has a complex value,
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Table 2.8. The tabular entries give the time eigenvalues,
for Mo = 5,23 cm™t, the

bucklings and the theories indicated

K, in

(microseconds)

Pi-Ly Diff. Theory

B2 38 K] K, Ky Ky K]
0.0cm™2  ,000000  .43300 .62181 .63853 .000000 .43300
.025 .000968  .44066 ,61923 .000959 43529
.050 .001936  .44909 ,60720 .62450 .001915 ,43749
.150 .005809  ,50411 ,55512 .005712 .44650
.200 .007747 S -%% 62012  ,007594 .45102
. 300 .011625 - -¥% 61730 .011326 .46009
.500 .019396 -k -*% 61203 ,018670 .47836
.700 .027194 s -¥% 60610 .025861 .49678
.900 .035028 - -%% 59987  ,032911 .51534
2,000 .079298 -k -¥% 56620 ,069561 61955
3.000 .123000 - %% -*¥% 53000 .100498 71667
%, 000 .246103 -k -*% 41790 ,157991 .91527
6.000 N - - -% ¥ .285304 1,01601
- .500 -.019300 --- .72680 .63870 =-,019810 ,38879
-1.500 -.058200 .22415 ,84550 .66310 =~,063741 30466
-2.000 -,078000 .19690 .89050 ,67440 =~.0883%2 .26525
-2.500 -.097600 .16500 --=  ,68530 =,115049 ,22792
~3.000 -.122400 .13770 ---  .69620 -.144030 .19288

**The root has a complex value.
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Figure 2.2. Eigenvalue curves for My = 0.67 cm — and the theories

indicated
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Figure 2.3, Eigenvalue curves for M, = 3.34 cm ~ and the theories

indicated 2
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Figure 2.4, Eigenvalue curves for M, = 3.85 cm = and the theories

indicated 2
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Figure 2.5. Eigenvalue curves for M, = 5.23 cm

indicated

o and the theories
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These limiting values are listed in Table 2.9 as
functions of M2. It is clear from this table that,
within the range of M2's investigated, the limiting

values are monotonic decreasing functions of M2. In

2
2smax.

the experimental range of bucklings. Thus the usual

addition, the table shows that B is well above
expansion of the lowest eigenvalue in power series of
82 is valid for the experimental ranges of B2 re=-

3 1 -~ e 2 .
pcrted in literature, Qn the other hand, Bl,max. is
within the range of pulsing experiments. For Nelkin's
scattering kernel; for example, it has a value of

2

0.45 cm © and the expansion of the second lowest

2 is doubtful.

eigenvalue in power series of B
The eigenvalue curve, which passes through 82 =K = 0,
has a negative curvature at this point for all the
models in question. The amplitude of the curvature
increases by decreasing M2. For the Nelkin water,

the curvature is in clcse agreement with the experi-
mental results. Recently, Travelli and Calame (52)
made a numerical investigation on thermal neutrcn

space time eigenvalue spectrum of the multigroup PN ap=
prcximations for a modified form of Radkowsky kernel.
Their results, in general, agree with the present
findings. However, in a 4-group Py calculation, al-

though the curve corresponding to the fundamental
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Table 2.9. The limiting values of buckling and the corres-
ponding decay constants for various water scat-

Values of \jip. obtained by

other authors are also indicated

tering kernels.

2 2

Kgigel My BY ,max B3 ,max Mim
references (cm-l) (cm™2) (cm™2) (107%sec7d)
Mass=18 0.67 1,37 + .03 6.67 £ .05 31,700
Nelkin 3.34 0.45 + .02 5.87 = .05 33.300
Mass=-1 3.85 0.37 = ,02 5.80 & .07 33,500
Brown & St.John 5.23 0.15 + .02 5.70 £ .07 33.800
Mass=-1 (41) -- c=- - 33,650
GIN (41)° -- - -——- 31.512
Gorngold and
Nichael (12) -- --- -—- 30.000
Doppler-
Corrected (45) 3.17 -—- -—- 42,000

8Goldman improved Nelkin kernel.

eigenvalue correctly passes through the

origin, its

curvature is positive at that point, in disagreement

with the experimental results.,

This leads to the

conclusion that the continuous energy representation

as given by two laguerre polynomials predicts the

results of pulsing experiments more accurately than

a 4-group approximation,
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With respect to the nature of the various eigenvalues
in the Pl-Ll approximation; one has the following argument:
For the sake of simplicity let us identify them fir;t by the
segquence KO < Kl < K2 < K3 .

The (KO,K3) pair is identified separately from the

(Kl,K2) pair by virtue of the one-speed model. For this

case equation 2.10.b reduces to the form

B A -
~-g+Z2 =0
Tny V7T a
3(zrg = ¢
or
A2 ) B2 | '
(§) - G(Zpg +2,) + T3 +5 =0 (2.10.b)
For each value of_B2, this equation gives two roots,
v 4(35 %, + B?) )
K=x=-vg, =58, -2)1%/1- 5]y (2.10.b)

a N
3(2TR + ):a)

which are identical to KO and K3 except for some modifications
due to the change in the energy spectrum, Equation 2.10.%

emplies that K is real only if

Hw

2
“tr

=

This means that the basic physical phenomenon of traveling

waves is not affected by the energy dependence as long as

—
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»the time behavior of the current is taken into consideration.
In case of no absorption and no leakage (B2 = 0) the

two eigenvalues of 2,1o,ﬁ become

Ko =2p =0 Ky = M = V8, o

The eigenvalue zero corresponds to a mode which persists
indefinitely; the corresponding eigenfunction has an arbi-
trary amplitude to match the initial flux but has no current
component. The eigenvalue VXtr has an eigenfunction which
has an arbitrary current amplitude to match the initial cur-
rent. This secénd mode then is simply an angular transient
which is due to the mismatch of the initial angular distri-
bution of the persisting mode. The neutrons in the second
mode do not leak out of the system nor are they absorbed

since in this particular example 82 = %_ =0. In this case

a
also the net current is zero according to equation 2.10.a,
The time taken for the angular transient to rearrange itself
| “i the persisting distribution is of the order of
(vztr)'l.
As the leakage and absorption terms increase from zero,
the net number of neutrons in the current transient becomes
non=zero. This net number is Jjust the number of neutrons
that will actually leak from and be absorbed in the second
mode, Fof large enough leakage or absorption the net number

of neutrons in the transient can be considerable and the
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influence of leakage is to make the properties of this tran-
sient more like that of the persisting mode.

On the other hand, the (KoﬁKl) pair can be identified
from the (K2,K3) pair by the diffusion=theory approximation
which gives a pair of eigenvalues close to the (KO,Kl) pair
at small values of 82. Since in this case the time dependence
of the neutron current is neglected and since in one=-group
diffusion approximation there is only one eigenvalue which
is closely related to KO at small 82, then Kl is simply an
eigenvalue of the energy transient. This transient is a dis-
tortion of the fundamental mode spectrum. It is essentially
an elgenvalue of the scattering kernel. In conclusion the

four eigenvalues are interpreted as follows:

Ky = The fundamental eigenvalue.

Kl = The eigenvalue of the energy transient.

K2 = The eigenvalue of the angular transient which is
a distortion to the second energy mode (with an
eigenvalue K,).

K3 = The eigenvalue of the angular transient that dis-

-torts the fundamental mode.

2
The value of K at B2,max.

for the fundamental eigenvalue KO. Thé corresponding value

is the limiting value, Kiim?

of Mim is obtained by adding the constant term Vogao‘

Values of Mim obtained by this method and as reported by
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different authors are listed in Table 2.9. This table indi-
cates that the limiting value is a function of the chemical

binding of the water molecules and that it increases slowly

with M2.

Ohanian and Daitch (41) calculated Ayip for the Mass-l
and the GIN (for the Goldman improved Nelkin) scattering
kernels. Their calculations were based upon a numerical
method employing a discrete representation of the energy
variable. Their reported value for the Mass-l kernel is in
excellent agreement with the present value as shown in Table
2.9. One can also observe the good agreement between the
value for the Mass-18 and that for the GIN kernel. The two
values differ by less than 1%.

While all values'reported in Table 2.9 agree with each
other within 10%, the value reported by Purohit and Sjostrand
(45) is out of this range. From the foregoing this value for
the Doppler~corrected kernel should lie in the range 33.0 x

10% - 33.3 x 10% sec.”?

C. Diffusion Parameters
In section B the discussion was mainly on the behavior
%)

of the time eigenvalues in the real (K,B<) plane. In the

light of the observations in that section, analytical ex-

pressions for various diffusion parameters of water will be

developed here.
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The first step in this direction is to write 2.37 in

the form:

2
B(t)wgg = 2tg1wWg) + togWyy) * 3WOQ|F;j]

5
3lwggwy ) = wgy)

2‘
K< = kv [

4 2 2
( tg5 ) + 3B

B

toot1l too [F1] ] (2. 38)

o 2
9(woow11 = wo1!

——

+ V

where tik is given by 2.27.

Equation 2.38 can be regarded as a transcendental quad-

ratic equation with two roots given by

KO =Ny " vV_%

O a0
= %[by = (03 = 4co)%] ' (2.39)
Ki =N = Vois0
= %lb, + (b2 = 4c)%) (2.40)
where
_ BQ(ti?)Woo - 2tfi)W01 * téBiﬁ;;) + 3woo Frg|
b, = V,l 5 1 (2.41)
3(woow)p = wgy)
S 11" %00 0l oG Flj_], (2.42)

5
Iwoowyy = wop)

and
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- K_) n = 0,1, (2.43)

(n) -
Ytk < vovik/(voxtro n

1

-e

From these equations valuable information can be ob-

tained.

l. Diffusion cooling coefficient

The expansion of 2.39 in power series of 82 is guar-
2

anteed only if B? < Bg’max.. If, in addition, BZ is small
the expansion assumes the simple form
Ko = Mo = Vorao
= p(82)8°% - c(B%)B + 08° (2.44)
where
D (B?) = —%= Votég) , (2.45)
3.7 -
2
DZ(B)
2 T
C.(B°) =g ) (2.46)
T VM,
v v
0
o= 1+ O (Ol (2.47)
JZ2 00 00

The numerical factory g, is a function of the energy
dependence of the transport mean free path and the number
of the Laguerre polynomials used in the series expansion of
the flux. Values of the factor g are given in Table 2.10

for the several approximations used.
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Table 2,10, Comparison of several expressions for the nu-
merical factor g

Values of g under Ferez
several approxi- Nelkin  Purohit et al. Pl-Ll
mations (38) (43) (a2

Energy dependent trans-

port mean free path 01,772 - 1.772  1.776

Constant transporf

mean free path 0.443 0.443 0.443 0.443
4

The coefficient, CT’ of B' is the transport snalog of
the diffusion cooling coefiicient CD, obtained from the dif-
fusion theory. CT’ however, differs from CD in its dependence

on Bz. To suppress <he Bz-dependence, one should write

2\52 _ 2
D, (B“)B* = D_BZ . (2.48)
2\o4 _ 4
C;(B%)B” = CBy (2.49)
where.
Do = The diffusion coefficient
=V v ’ (2.50)
o OO/BWOOZ‘tro
C = The diffusion cooling coefficient
— 2
= gDo/VoM2 (2.51)

and B% is given, to the order of 86, by
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2 _ o2 2 2
Br = BS/[1 - D_B(l - gD B/VM,)/V T, ] (2.92)

This expression shows that B% is a function of both the

geometric and the scattering properties of the moderator.

The ratio B%/B2 is plotted versus 82, for M2 = 3.34 cm'l, in

Figure 2.6. The curve shows thats for the values of 82 con-

2 by no more than 4%. Hence one

sidered, B% differs from B
can consider B% as a transport buckling with a non-diffusive
correction for 82. Furthermore, the values of B%/B2 reported
in Table 2.11 show that the ratio is not sensitive to M2 for
small values of 82.

The substitution of 2.48 and 2.49 into 2.44 gives

Ko = 2o = Vo@a0

2 4 6 e -
D,BT - CB} + OBZ (2.53)

Both Do and C are independent of 82.

Expression 2.%1 for C was first derived by Nelkin (38)
using the Rayleigh-Ritz variational principle, based upon the
neutron temperature concept. Using the same concept, Mani
(35) modified it‘to take into account the variation of the
transport mean free path with energy. Singwi (48) developed
a general theory of the diffusion cooling based upon the ex-
pansion of the asymptotic energy distribution by a sum of the
associated Laguerre polynomials of order one. Hifele and

Dresner (26) have also given a similar theory for the calcu-
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Figure 2.6, . A plot of the ratio 8.21./82 versus B2 for M2 =
3.34 cm™t
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Table 2.11., The ratios of B%/B2 for various values of 82

and two values of M2

B2/8%
B (cn™?) M, = 3.34 cm* M, = 3.85 cm™*
2’ 2
0.000 1.0000 1.0000
0.025 1.0016 1.0016
0.050 1.0031 1.0031
0.150 1.0093 1.0093
0.200 1.0124 1.0124
0.300 1.0184 1.0184
0.500 1.0303 1.0305
0.700 1.0427 1.0431

lation of the diffusion cooling coefficient in a monoatomic
heavy gas, using the same expansion. Kazarnovsky et al.
(30) also used the Laguerre polynomials in their study of
neutron thermalization problems. All of these studies were
undertaken for the finite medium under the diffusion approx-
imation. Nelkin (39) studied the decay of a thermalized
neutron pulse in an iniinite plane geometry using the trans~
port theory in the Fourier space, The Fourie; variable, B,

in Nelkin's formalism has been left ill-defined. The appli-
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cation of this method to a moderator with finite size and
energy dependent transport mean free path is not unique (59).
Expression 2.50 and 2.5]1 were derived using neither
the neutron temperature concept nor the Fourier transform
technique., By the application of the proper boundary con=-
ditions,y it will be shown later that the variable B in this
thesis has a definite physical meaning.
Table 2.12 shows a comparison between values of C and

2

Dy obtained by the suppression of the B“-dependence and

those reported by other authors. It is clear that there is
an agreement between the present values for the Nelkin's
water and the P3 values obtained by Gelbard and Davis for
the Radkowsky kernel.

As a further check on the validity of the above ex~
pansion, Ao was calculated from 2.53 and 2.39 with an iter-
ative technique. The results are listed in table 2.13 for

M, = 3.34 cm™Y., The table indicates that, within the limits

2
of accuracy set for the computer, both values agree quite

satisfactorily.

2. Thermalization time constant

The thermalization time constant is defined as the time
constant with which the neutrons attain an asymptotic energy
distribution by colliding with the atoms of a moderator. In

case of an infinite and non-absorbing medium equation 2.39
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Table 2.12. Values of the diffusion cooling coefficient, C,
and diffusion coefficient, D for various

]
methods °©
Method C D0 Range of
and Kernel 4 -1 5 .1 bucklings
references cm ' .sec., cm“.sec, cm™2
Pl-Ll . H gas 3139 38692 -——
" Mass-18 18038 38692 o=
" - Nelkin 3618 38692 -
" Brown &
St. John 2311 38692 -
Py (24) Radkowsky 3614 38380 ---
Calame (7) Nelkin 2931 36810 -—=
Scott et al.
(46) --- - 385004800 .006=-,018
Antonov et al. '
(1) --- 400011000 35000%£1000 .09 =-.93
Lopez and
Beyster (34) --- 4852+800  36700+370 .0 =1,00

Table 2,13. Values of the fundamental decay constant, \gs
as obtained from the correct form 2.39 and the
expansion form 2.53, for My = 3.34 cm™4 %,

g2 Ao(sec.-l)

(cm 2) Correct value Expansion value (xocorr = Ao expans. )
0.000 4876 4876 0.00

0.025 584315 5843 0,00

0,050 6809+5 . 6809 0.00

0.150 10656+5 10651 5.00+5

0.200 125725 12563 9.00+5

0,300 16388+5 16359 29,0015

0.500 2396515 23850 115,005

0.700 314855 31170 315,005

3Nelkin scattering model.
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and 2.40 reduce respectively to

K

0 =2 =0 (2.54)

_ 2
Ky = Ny = =VgwgoFy 3/ (wggwyy = woy)

[}

2voM2/3Jv (2.55)

In this case there is an asymptotic energy distribution.
The decay of this distribution is governed by Ao equals to
zero. If the atoms of fhe moderator have a Maxwellian vel-
ocity distribution, then the asymptotic distribution is also
the Maxwellian distribution which is established with a
thermalization time constant equals to the reciprocal of
Kl' In the case of a finite medium, the zeros eigenvalues
associated with the higher spatial modes also play an im~-
portant role in the establishment of the final asymptotic
energy distiibution. If the amplitudes of higher modes are
very small compared with the fundamental spatial modes; then
the first eigenvalue, xl’ would give the thermalization time
constant in the finite medium, The discussion, here, is
limited to the time constant with which the Maxwellian dis-
tribution is established.

The thermalization time constant is given by the re-

ciprocal of Kl

NG
f (2.56)
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a result which is identical with that derived from the dif-
fusion theory (43). ft is a correction factor due to higher
order polynomials than Li. Its value is 1.1% (49).

Various models have been considered in calculating tth
according to equation 2.56. The results are presented in
Table 2.14., Two cases were treated. In case I the transport
mean free path is energy dependent; while in case II it is
taken as a constant. As could be seen from this table, tth
for the constant xth is about 4 times as large as that for
the energy dependent case for all the models used. Thus a
comparison between these results and the experimental values
of tth would indicate the energy behavior of the transport
mean free path. Fortunately, Moller and Sjostrand (37) have
measured tth in light water by obtaining information on the
change of the neutron spectrum with time from the reaction
rate with spectrum indicators dissolved in the system. They
reported a value of 4.1 % 0,4 usec, This agrees with the
value of 4.16 usec obtained for M, = 3.34 cm™t in the energy
dependent case. One concludes, therefore, that the transport
cross section for light water behaves more or less like 1/V.

De Jurene (17) took into account the spectral changes
caused by diffusion-cooling and reported a value of 2,77 %
0.65 usec, Although this result disagrees with the experi-
méntal value reported by Moller, yet it is in accord with

the theoretical value for M, = 5.23 cm™% (Brown and St.John
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Tapble 2.14, Thermalization time constant for light water in
the P;-L) approximation for various scattering

models

Kernel M, ten (microseconds)

-1 Case I Case II

(cm ™) (X anE) (Ay, = const.)

Nelkin 3.34 4,16 16.69
Mass=1 3.85 3.61 14.48
Mass~18 0.67 13.85 33.17
Brown &
St.John 5.23 2.66 10.66

scattering model),

Wood (60) represented water with the effective width
kernel of Egelstaff (22). He calculated tip for water as a
function of the reciproéal of the effective width parameter,
dy, of the scattering law. His results are listed in Table
2.15 which shows that the value of ty, at d = 0,27 is in
agreement with the P,-L; value for the Nelkin's model.

The thermalization time constant can also be expressed
in terms of the cooling coefficient by eliminating M2 be-

tween 2.51 and 2.59. The result is

6C 8 Voi Vol -1
p, =8 4 8 0L - 1)1 f, (n,.a~E)
th Dg ,-2 VOO VOO t P tr
= 8C ¢ s (\gp = const.),

(2.57)
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Table 2.15. Thermalization time constant for light water by
other authors

Reference Kernel tin (microseconds)
Moller &
Sjéstrand (37) -—- 4,10 + .4 (water)
DeJurene (17) ——— 2,77 + .65
Wood (60) Effective width 4.50 (d®= .21)

" " " 4,13 (d = ,27)

" " " 3.71 (d = .50)

" Mass=1 . 3.60

" Mass=~1.88 4,89

" Mass=2 5.05

84 is the reciprocal of the effective width parameter of
Egelstaff Kernel (22).

in agreement with the expression obtained by Purohit (43).

D. Space and Energy Dependent Eigenfunctions
The existence of a unique buckling depends on the va-
lidity of the first fundamental theorem of reactor theory

vis. space and energy are separable:

o({r,E) = X(z)Y(E) (2.58)

This is true in a homogeneous infinite medium. It re-
quires, however, some justification in finite systems. What
is done is to seek an "asymptotic" region inside the medium

far from the boundaries in which the first fundamental theorem
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is valid. Experiments (29) have been performed to test this
assumption. Those by Inonu at Oak Ridge are particularly
interesting. Inonu measured the thermal and epithermal fluxes
and showed that only if data within 3-3.5 inches of the bpund-
ary of a large critical aqueous U=-235 solution were included |
was the extrapolation distance independent of energy i.e.
equation 2.58 applies. This example is an extreme example:

in non-multiplying medium the effect will be less.,

On physical grounds the exact solution can be written in

the form
¢(z,E) = °as(£’E) + Otrans.(z’E)
= X(D)Y(E) + o, o (5yE) (2.59)

The asymptotic part establishes a unique extrapolation dis-
tance, d(Bz),.for a given buckling and energy. Figure 2.7
shows how this extrapolation distance is related to the
asymptotic flux. The distance S is the width of the zone in

which the term ¢ (zsE) is important.

trans.
In this section analytical expressions for LI and

%+ rans. 2F€ established. In a latter section an expression

for d(B2) will be found.
As has been mentioned before, the polynomial Q(K,BZ)

given by equation 2.37 is of degree 2 in Bz. For K = KO

2

(the lowest eigenvalue), the equation for B“ becomes
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Figure 2.7, The_relation between the extrapolation distance,
d(B2), and the asymptotic flux distribution.
The width, S, of the transient zone is indicated



53

( ) ( ) )2 “‘(O)M 3K ( ) /A
0),(0) _ {0 4 _ 700 ™2 _ "0, (0 _ 5. (0]}
(tpg'ty) = 1" 1B + [—35 v (11 o0 ~ 2%1 o1
2
Ks OK AW A D
. +10), 20y s w2y . 22070072
T %00 oo”8 v —5 ooy = Woy ) 4V 0 (2.60)
)
where tég) is given by 2.43.
For Ky & Kyy,  all the coefficients in 2.60 ere real
In sddition, in case of light water, the term (%t ég) sg)

2

\O) ) is a2 positive quantity. The last coefficient is

‘o1
negative only if

v ‘\I
Ko < 002 5 (2.61)

4{Woo1] = Wou

Thus it is easily established, by requiring that the coefficient

~
of B is positivey that for

V M
Ko < 972 (2.62)

4(vgo¥11 ¥ V11%00 - 2Y01%o1/

P 44
~ 1.88 x 10 l\h2

: 2
there exist two values of B

2. g2 B2 = -U2 (2.63)

B 0 5

where both Bg and U? are positive quantities, The interpreta-
tion of B2 as the geometric buckling, Bg, of the system depends

0
on the application of the boundary condition at the vacuum-
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matter interface. The commonly used outer face boundary con-
ditions are the Marshak and the zero extrapolated flux boundary
condition. The first boundary condition will be used in this

thesis. Taking Bg as BS

s one can write the scalar flux in the
form

oolrsE) = Fo(B,E)J,(Br)

Po(Bg,E)jo(Bgr) + PO(U,E)jO(iUr) (2.64)
where '
- -E- .0 1 1
Fo(Bg,E) = ABgEe [FO(Bg) + 75(2 - E)FO(Bg)] ) (2.65)
Fo(U,E) = AjEe F[FO(U) +-j§(2 - E)F§(U)] (2.66)

Recalling equation 2.59, one can associate the first term

of 2.64 with X(r)Y(E) and the second term with °(£’E)trans'

l. The relaxation length
The physical meaning of U™l is understood by writing 2.64

in the form

. - -EJrg O 1 g L :
0o(rsE) = Ag Be "q[Fy (by) + ;5(2 - E)Fy7(Bg)13p(ByT)

a.
PR OW) + L (2 - B)EL W) Isplausy (2.67)
ABg 0 VE 0 0

The ratio AU/AB is determined by applying the Marshak's

boundary condition at the vacuum interface. It is found that
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Ay _ o~U(R-1) .
Kg jo(1Ur)¢: const x = (2.68)
9
1 this term decays rapidly and

Thus for distances > U~

U"l is interpreted as a relaxation length which is a measure

of the transient zone near the boundary. U-l is given by

oo |

U2 = 1.4027 x 10’11K0(v

’

7.315 x 10%M

- Ko c 2 . 2.9465)

oztro 0

6 ~6
1.3349 x 10 (M2/4KO - 3.0208 x 10 ),

x [1 + (1 + 5 5
(2926 x 10 My /aKo - 2.9465)

(2.69)

For the Nelkin's water, calculations indicate that U"l

= 0.483 cm in the limit as Bgﬂo. The results suggest that
deviation from the asymptotic solution begins to become large
at points of the order of 0.5 cm from the boundary. Table
2.16 shows the variation of U™% with buckling. The observed
increase of the relaxation length with BS is expected on the
basis that the energy spectrum deviates more from the Max-
wellian distribution for small systems. U-l is very sensi-
tive to the value of M2 and the effect of chemical binding

on the space-energy separability can be studies through this
parameter. From Table 2,16 it can be seen that the smaller

the value of M2 the less accurate is the space-energy
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Table 2.16. The variatién of the relaxation length for water
with buckling and Mza

Bg - U:i(cm) — -
(cﬁz) 'M2 = 0.67cm M2 =‘3.34cm M2 = 3.85cm M2 = 5,23cm
0.000 1.07000 0.483C0 0.44300 0.38200
0.025 1.10244 0.48557 0.45187 0.38732
0.050 1.12898 0.48818 0.45403 0.38876
0.150 1.24405 0.49889 0.46284 0.39462
0.200 1.30713 0.50439 0.46736 0.39762
0.300 1.44415 0.51571 0.47663 0.40374
0.500 1.73918 0.53967 - 0.49617 0.41656
0.700 %% 0.56552 0.51714 0.43017
0.900 - 0.59339 0.53964 0.44466

%The values of M2 correspond to the scattering kernels
listed in Table 2.4. ‘

**a complex value.

separability, i.e., the smaller is the asymptotic region.
For M, = .67 cm™! there is no unique buckling above a value
of 0.5 cm™2 where the inequality 2.62 is invalidated.

2. The asymptotic diffusion-cooled neutron spectrum

The spectrum of the asymptotic distribution is given

by

- ~Erg O 1 1
Fo (BgsE) = ABgEe [Fo (Bg) 4-225(2 - E)JF5 (Bg)]  (2.70)
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where Fg(Bg) is an arbitrary constant that can be taken as
unity since it originates in the set of two homogeneous
equations given by 2.32, The quantity Fé(Bg) has the form

2,.(0)
BZto0 /3 = wo Ko/,

1
F(B)= <
0'"g 2,(0) /o _
Bgtll /3 wllKO/Vo + M2/4

(2.71)

The latter expression is obtajned from 2.32 and is considered
as a measure of the deviation from the Maxwellian distriou=-
tion. Figure 2.8 shows a plot of Fé(Bg) versus BS. It is
clear from this Figure that Fé(Bg) is zero only for an in-
finite medium where the energy distribution follows the
Maxwellian distribution,

Examples of the diffusion=-cooled spectra for the Nelkin's
scattering model are shown in Figure 2.9. The corresponding
data are listed in Table 2.17. In Figure 2.9, the shifting
of the peak of the curve toward lower energy values with in=-
creasing 82 is evident, and the change of the shape of the
curve is indicated. The Maxwellian distribution is seen to
represent the limiting value of FO(Bg'E) as BSAO. The mag~=
nitude of the cooling effect is indicated by the shifting of
the peak value of the curve from one unit of KT for Bg =0
to .87 units of KT for BS = .9 cm-z.

Recently, Clendenen (9) made similar calculations for

light water treated with the Nelkin model. He used a new

iterative method applied to a Pll approximation although
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Figure 2.8, Buckling dependence of Fé(Bg) for various values
of M
2
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Figure 2.9. Diffusion-cooled neutron spectra for Nelkin model
of water moderator at room temperature. Variation
with buckling Bg (cm™2) is shown
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Table 2.17, Normalized values of diffusion-cooled neutron
spectra for Nelkin model of water moderator at
room temperature., Variation with buckling Bg

is indicated

Energy, E FO(Bq’E)
in units of KT Bg = O.Ocm'2 Bg = 0.5 cm“2 Bg = 0,9 cm-2
0.000 0.0000 0.0000 0.0000
0.025 0.0245 0.0266 ' 0.0280
0.500 0.3033 0.323% 0.3385
0,750 - 0.,3543 0.3740 0.3885
1,000 0.3679 0.3842 0.3963
1,500 0.3347 0.3421 0.3476
2.000 0.2707 0.2707 0.2707
0.500 0.2052 0.2006 0.1973
3.000 0.1493 0.1427 ~0.1378
3.500 0,1057 0.0987 0.0930
4,000 0.0732 0.0667 0.0619
4,500 0.0500 0.0445 0.0403
5.000 0.0337 0.0292 0.0259

his results generally agree with the present findings, the
method does not directly give the limiting value of FO(Bg,E)

as BS*O. Besides, this method is only suited to high=-order

approximations to the transport equation.
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3. The energy spectrum of the transient component

This spectrum is given by

_ -E, 1 1
Fo(UsE) = AjEe™"[1 + -;(2 - E)Fg(U)] (2.72)
where
u2¢(0) /5 K. /V
Fl(u) = f00 /3 * "oV (2.73)

~2,.(0)
U 101 /3 + WOlKO/Vo

Fé(U) is plotted, for various scattering kernels, in
Figure 2.10. It starts from a non-zero value for an infinite
medium and increases steadily with decreasing the size of thé
| system. The implication.of these results is that the energy
spectrum of the transient distribution is always a non-Max-
wellian distribution and that its magnitude becomes signifi-
cant for small systems. Examples of this spectrum, for the
Nelkin's water are shown in Figure 2.11. The corresponding
data are listed in Table 2.18, Each of these curves is
shown to have a minimum and a maximum the location of which
depends on the value of BS, i.e.y on the cooling effect.

Having discussed the energy spectra of the asymptotic
and the transient components of the scalar flux, it is of
practical importance to discuss this distribution as a func=-
tion of the position r. The fluxloo(g,E) as given by 2.63
is plotted in Figure 2.12 versus the ratio r/R at B2 = 0.5

g
cm'2 and two different values of energy. For the sake of



62

(U)

Fo

Figure 2.10. Buckling dependence of Fé(U) for various

values of M2 .
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- BZ = 0.50 Cni2
85 =0.05 Cni2

0.

Fo (U, E)(Arbitrary Units)

0.0

-0.4 —
ENERGY (KT units) ——=

Figure 2.11, Transient energy spectra for Nelkin's water a-
room temperature, Variation with buckling
Bg(cm-z) is shown
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¢, (r,E) ( Arbitrary Units)
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Total Distribution
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*igure 2,12,
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Flux distribution as a function of space points

at Bg = 0.5 cm'2 |
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Table 2.18., Transient energy spectra at room temperature for
tge Neékln s water. Variation with buckling
Bg(cm is indicated
Energy, E, FO(U,E) (Arbitrary Units)
(KTUnits) Bg = 0.05 cm™2 Bg = 0.5 cm™2
0.000 0.0000 0.0000
0.025 0.1235 0.1534
0.500 1.2342 1.5170
0.750 1.2605 1.5360
1.000 1.1207 1.3490
1.500 0.6772 0.7810
2.000 0.2707 0.2707
2.500 -0.,0048 -0.0625
3.000 -0,1562 -0.2490
3.500 -0.2187 -0.3152
4,000 -0,2264 ~-0.3143
4,500 ~-0,20958 -0.2835
5.000 -0.1732 -0.2360

comparison, the asymptotic flux distribution is also plotted
in the same Figure from which one can observe the following:
l. For points far from the physical boundary by amounts
of the order of U'l, the total flux, independent of
energy, has the same value as the asympfotic dis~
tribution, N
2. Close to the boundary the two fluxes differ from

each other. The difference depends on the energy.
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At low energies (cilose to KT), the asymptotic flux
has a higher value; while at high energies (in the
order of 5KT) the asymptotic flux has a lesser mag-
nitude than the total flux.

Thus the'effect of the transient flux near the boundary
is a function of energy. At high energy the effect is sub-
tractive and the predicted extrapolation length; according
to the "total" flux distributiony; is greater than that for
the asymptotic distribution. On the other hand, at low en-
ergies the effect is additive giving rise to an extrapolation
distance lower than the asymptotic value. In practice, how-
ever, the flux distribution is measured by a boron trifluride
detector over a range of energy. The net transient effect in
this range is found to be additive. This point will be made
more clear in the next section in the discussion of the ef=-
fective average energy.

In support of the above observations, are the results of
Walker (56) who illustrated the effect of the flux distortion
on the extrapolated endpoint of a 4-in cubic container filled
with water. His results indicated that the extrapolation
distance increases steadily by including more points closer

to the boundaries.

E., Spectrum-Averaged Parameters
Having obtained oo(r,E), one is in a position to calcu-

late various parameters averaged over the space-dependent



67

neutron spectrum. Two of these of interest in the thermal-

ization problem are
l., Effective average energy.

2. Effective buckling.

l. Effective average energy

The effective average energy is defined (59) by

2y = & (2.74)

This leads to

L8 )3y(8,5) + By Fo(Uioliur)
E gg(maB)) =2[1 - = .
9 2 . Ay
JO(Bgr) Al (iUr)
Bg
(2.75)
where
Ay _ Fgl(B))3o(BeR) *%‘tgf) + 413055 (8,) 5, (BGR) (2.76)
Ag Fl(U)jO(iUR) - 20, (O)FO(U)) Uj, (iUR) )

g 0 3

and

First order spherical Bessel function

il

3 (x)

sin x _ £0s X

X2 X

Eeff(r,B2) is a measure of the way in which the neutron
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68

position and how accurately

space and energy can be made separable., Two special cases

. .= 2 = 2 _
are of interest: Eeff(O’Bg) and Eeff(R’Bg)' These are re
spectively given by

FL(B ) + (UA /B A, )JEX(U)

_ 5 L 0'7g U P78, "0
Egss(0sBg) = 2[1 - = ] (2.77)

9 V2 1+ (UA,/B_Ag )

g Bg
1 1
- F~(B_ ) + YF=(U)
E¢c(RyB2) = 201 - & 03 0 3 (2.78)
€ 9 V2 1+Y
where
el ) + 20489 4 ¢(9)el(5 y7(B cotB R-1/R)
- 0' g 3- 01 1l "0'"¢g (S| g

e eiu) + 20¢890 + £199E (y)(Ucothur - 1/R)

0 301 11 °0
For an infinite medium

E ..(Ro® , BZ+0) = 2KT (2.79)
eff ? Pg ‘ ’ :

the same as that one obtaine
to be rigorously separable.

wellian distribution. For a

d by assuming space and energy
This average is for the Max~-

finite medium, however, there

is a preferential leakage that depends strongly on the be-:

havior of the transport mean

free path with energy (59).

For light water, A is proportional to the square root of
tr G

energy and the preferential

leak is in favor of the high
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energy neutrons, a matter that results in a diffusion cool~-
ing phenomencn. For most of the crystalline moderators,
like beryllium, the reverse is true (59) and one has a dif-
fusion heating.

The effective average energy for light water is plotfed
as a function of position in Figure 2.13. The plot (for

M, = 3.34 cm-l) shows the constancy of the average energy

2
with position up to a distance from the boundary in the order

of U-l. Close to the outer boundary, there is a marked in-
crease in Eeff‘ A physical explanation of these results can
be given in the light of certain experiments. According to
Zinn (61) the temperature of neutrons emitted from a paraf-
fin surface was 390°K whereas their temperature inside the
medium was 300°K .

In conclusiony for a precise calculation of the neutron
spectrum in a finite system it is necessary to take into ac-
count the changes in neutron dénsity and spectrum in the
vicinity of the boundary of the medium, which are caused by
escapey and also the transfer of neutrons from a group with

one energy to a group with another as a sequence of the energy

exchange in the medium.

2. Effective buckling
The asymptotic region can be displayed quite easily by

the expression (24)
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Figure 2.13. Variétion of the effective average energy with

position for M, = 3,34 cm™L,
1/V scatterer

Water is taken as
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[ "o (rsE)dE

2 - . A0
Begg = J'w )
o.(ryE)dE
0 0
. U .
sinB r - B sinhUr
2 9 g
= B (2.80)
g By .
51ntr + g sinhUr

disregarding the second term of 2,80, i.e., taking into ac-

count the asymptotic flux, then Bg = Biff‘ Thus the space

2
g

parture from the asymptotic region. Bsz and -Aao(ryE)/éo(r,E)

variation of Bgff and its departure from BZ indicate the de-

for a sphere of water are plotted in Figure 2.14, Here

Bg = 0.5 cm 2. The effective buckling behaves in a fashion
similar to the effective average energy defined above, How~

2
e

that of the average energy. The Figure also indicates that

every the relative variation of B £5 is much greater than

B2,; corresponds to -p9,(r,E)/oy(r,E) at E = 2KT.

F. The Buckling Dependence of the
Extrapolation Distance
To obtain the extrapolation distance in case of the
existence of an asymptotic region the boundary conditions
must be applied. For the vacuum-matter interface the
Marshak's boundary condition can be used. In the Pl ap=

"proximation it has the form:
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Figure 2.14,

Variation of the effective buckling and
ﬁAQO(IQE)/QO(T,E) with position for M, =
3.34 cm™l. Water is taken as 1/V scatterer
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oo(R,E) - Qol(R,E) =0 (2.81)

and in the Ll approximation:

og(R) - 202(R) =0 | (2.82.a)
oé(R) - 2oi(n) =0 (2.82.b)

From equation 2.6, 2.16y 2,33 and 2.63

08 = AngO(BgR) + ALdg(iUR) (2.83)
oé - ABgFé( By)igBgR) + AUFé(U)jO(iUR) | (2.84)
0 845 (0) (0)¢1
U
+ 1ﬁ9— 0) + tég) O(U)]sl(mua) (2.85)
Ag B,
o}(R) = —3—(¢(9) + +{9Fd(8 )15, (B R)
iA U
v o), o 5(U) 131 (3UR) (2.86)

By the substitution of these equations into 2.82, the follow-

ing characteristic equation can be obtained.
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74

2B
3o(BgR) = 2] + 593 (B3, (B,R)

B 2iB
Tig(iUR) = —i—g(t o) + ¢{9)g} (U))3;(iUR)

o1 Fo
= 0
3o(BR) = 38 (597 + ¢190F3(B.)) 3, (BR)
B
UJO(lUR) 3Bg(té?) + tgg)Fé(U))jl(iUR)

(2.87)
The conventional definition of the geometric buckling for

a sphere with a radius R is

This definition can only be retained if d = d(Bg). The sub=~

stitution of

jO(BgR)/nO(BgR) = tantd (2.88)

into 2.87 yields

1 -1 2 0
d(Bg) = §é [}an (—B (t( ) 4 tél) O(B )) x

-
o 0
too’ * ol FO(Bg)
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where
g =R - %[tég) + téo) l(u)]n - URCOthUR] (2.90)
el _ 2:.(0) (O ) -
h = RFO(U) £lto;’ + tll (U)][l URcothUR] (2.91)
The physical meaning of the factor (190 - ¢{Q)gL( () i
pny g *00 ol Fo

made clear by observing that

Aq
hep(E) = WLZR(E) - 37
and
“Eo(BoyE)h, (E)dE
.[2 g r - {90, tég) é(Bg) = <N (E) >
J FolBgrE)dE B
0 (2.92)

Thus this factor is the effective transport mean free path
averaged over the asymptotic distribution., It gives the
buckling dependence of the extrapolation distance resulting
from the diffusion cooling.

Equation 2.89 is a transcendental equation since it

emplicitly contains d(B_) in the right hand side. The ex-

g
trapolation distance for a given buckling was obtained through
an iterative technique carried out on the IBM=-360 cémputer.
The results, for various scattering kernels, are listed in

Table 2.19 and plotted in Figure 2.15., Gelbard and Davis
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.36

d(B) , (Cm)

S Method

3l

4

-a-ag (Cm~2)

: Calculated using 2.89
------ Gelbard and Davis (24)

Figure 2,15, The buckling dependence of the extrapolation
distance in spherical geometry. The variation

with M2 is indicated
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Table 2.19. The buckling dependence of the extrapolation
distance in spherical geometry for different

values of M2

52 Extrapolation distance, d(Bg) cm
?2 M, = My = M, = M, =
(em =) 0.67 cm-l 3.34 cm—l 3.85 cm-l 5.23 cm"l
0.000 0.3432 0.3369 0.3362 0.3347
0,025 0.3430 0.3389 0.3383 0.3369
0.050 0.3416 0.3409 0.3404 0.3392
0.150 0.3326 0.3451 0,2451 00,3446
. 0.200 0.3276 0, 3464 0.3466 0.3465
0.300 0.3182 0.3482 0.3488 0.3495
0.500 - ¥ 0.3502 0,3517 0.3541
0.700 -K% 0.3511 0.3536 0.3576
0.900 -¥¥% 0.3514 0.3548 0.3605

**The theory does not hold at this value of Bg.

(24) have also calculated the extrapolation distance for the
P3 and the diffusion appfoximation. The dotted curves show
their results. For the P3 calculations, the authors employed
the Radkowsky kernel,and the Marshak's boundary condition.
The diffusion theory curve was obtained by the delta method

that consists of defining a linear extrapolation distance

sinB_ r sinB_ r
- = £ ) /e (2.93)
T
r =R r =R

and an augumentation length (d(Bg) in this section). By
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2
g .
to d(0), d(Bg) can be obtained by iterating between 2.93 and

plotting & versus B~ and starting with a trial value equals

82 = (gars 7!’
g R+ d(By

From Figure 2.15 it is clear that, while the P)-L; curves
have the general shape of the delta-curve; they markedly dis-
agree with the P3 curve. It can be concluded,; therefore,
that the Pl-Ll approximation in spherical geometry with the
Marshak's boundary condition over-estimates the buckling de-
pendence of the extrapolation distance.

Gelbard (23) remarked that in a PN approximation of any
order the eigenvalue of a spherical reactor is exactly equal
to the eigenvalue of an "equivalent" slab reactor. An “equiv-
alent" slab reactor is a slab reactor of half thickness Ry hav-
ing the same composition as the sphere. The flux in the "egquiv-
alent" reactor is constrained to be antisymmetric about its
midplane. Thus the main mode of a bare sphere having a diam=-
eter 2R is equal to the second mode of a bare slaby of the
same composition, with thickness 2R. In another paper by
Gelbard and Davis (24) it has been pointed out that the ex-
trépolation distances for a sphere and the corresponding
equivalent slab are exactly the same in the P3 approximation.,

To test the validity of Gelbard's observations in case

¢f the Pl-Ll approximation, the equivalent slab calculations
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were carried out using (53):

d(8,) =—ltan"1(Z8, (400 + (VL5 ))

g 9 37g g
(0) (0):1
t t F~(B
S TR b L (2.94)
tog’ * tol FO(BG)
X X )]
1 - FO(Bg)%

with g and h assuming the new forms:

g =1+ %[tég) + tég)Fé(U)]UtanhUR » (2.95)
ho= F3(U) + %[tég) + +{9)EL (U) 1UtannuR (2.96)

It should be ﬁoted that R in 2.94 is the half thickness‘of the
“"equivalent" slab and Bg is its second lowest eigenvalue.
Furthermore this equation can be obtained from 2.89 by de-
leting all terms explicitly containing R and replacing coth(UR)
by tanh(UR). Thus the extrapolation distance of the equiva-
lent slab is a limiting case of the corresponding bare sphere.
. The extrapolation distances for the equivalen{ slab are
listed in Table 2.20 and plotted in Figure 2.16 from which
one can observe the marked improvement in the behavior of the
extrapolation distance as a function of obuckling. In this
case the curve for the Nelkin's water agrees qualitatively
with the P3 curve, The difference in the magnitude is partly

because of the error involving the Pl approximation and
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35

d(B5), (Cm)

— BS ( Cm‘a)

Figure 2.16, The buckling dependence of the extrapolation
distance in "equivalent" slab geometries. The
variation with M2 is indicated ’
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Table 2.20. The buckling dependence of the extrapolation
distance in "equivalent" slab geometry for
different values of M2

Extrapolation distance, d(B2) cm

Bg g
, M, = M, = M, = M, =
(em ) 0.67 co™t  3.38 ca”!?  3.85 em™!t  5.23 em”t
0.000 0.3405 0.3349 0.3313 0.3328
0.025 0.3366 0.3329 0.3310 0.3323
0.050 0.3327 0.3323 0.3307 0.3319
0.150 0.3180 0.3299 0.3295 0.3299
0.200 © 0.3113 0.3287 0.3289 0.3289
0.300 0.2994 0.3264 0.3277 0.3270
0.500 — 0.3219 0.3254 0.3233
0.700 i 0.3176 0.3232 0.3197
0.900 — 0.3136 0.3211 0.3164

**The theory does not hold at this value of BS.

partly because of the error in the Ll approximation; besides,
the two kernels are different.

From the foregoing, it can be concluded that in order
for the Pl-Ll approximation in spherical geometry to be useful
in the analysis of pulse experiments the extrapolation dis-
tance of an equivalent slab should be used. This is because

the Marshak's boundary condition is more suited to a slab

than to a spherical geometry.
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III. EQUIPMENT

The main components of the apparatus used in the ex-
perimental work are

A. Neutron generator,

B. Pulsing system.

C. 400=-channel analyser.

b. Timer system.

E. Neutron detection system.

F. Spherical containers.

G. Shielding facility and detector mount.
The experimental arrangement of these components was as in=-
dicated by the schematic diagram shown in Figure 3.1. The
individual components are described below. The generator
control and pulsing console; 400-channel analyser, timer

system and monitor detector are shown in Figure 3.2.

A, Neutron Generator
Fast neutrons were produced by the reaction of an ac-
celerated bositive ion beam (deutrons or protons) on a tritium

target according to the following reaction:

D2 + T3 d nl + He4 + 17.6 Mev.

The ion beam was produced by the Texas Nuclear Corporation
Model 9400 Neutron Generator whose operation depends on the

production, extraction and acceleration of ions. The major



Figure 3.1,
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Figure 3.2. Neutron generator and pulsing consoley monitor scaler
timer system, 400~channel analyzer, and accessory
equipment
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components of this generator are shown pictorially in Figure

. 3.3 and schematically in 3.4. Positive ions are produced in

(]

Q.
U
g
)
)
O

—
~c
'

a radio-ireguency type ion source and are extract

a potential across the ion source bottle. The ions are

(4]

n

K2

~ A e w g

focused by a gap lens situzted directly after the exit canal

of the ion source base. The ions leave the gap lens and

enter the field of the accelerating tube where they are

accelerated through a potential of 150 Kv. After leaving
F—

the accelerating tube, the ions drift through a potential

ne target. A

ct

free region (drift tube) until they strike

vacuum is maintained through the entire system to minimize

[WH

scattering of the ion beam.

The ion source used in the generator is a radio fre-
quency type which is capable of producing an ion beam cur=~
rent in excess of one milliampere. The current is composed

and 10%

(1]

approximately of 90% singly ionized atomic ion
mclecular ions. Hydrogen (or deuterium) gas is allowed to
flow into the pyrex ion bottle by means of a palladium leak.
The gas from the leak enters through a hole in the ion
source base. An r-f field {approximately 60 FMc/sec.) ap-
plied to the two excitor rings causes intense ionization of
the hydrogen gas. The positive ions in the discharge are
forced towards the exit canal by applying a positive po=-
tential across the bottle. A magnetic field whose lines of

force are in the direction of the long axis of the bottle



Figure 3.3. Neutron generator
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Figure 3.4. Major ccmponents of neutron generator
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is produced by a solenoid coil and serves in restricting

the electron paths to the center portion of the bottle and

causes them to spiral. The spiraling motion increases the

ioniiation probability in the recion of the exit canal.
The target used with the 9400 consists of tritium

absorbed onto a thin layer of titanium approximately

2 to 3 mg/cm2 thick. The layer has been evaporated onto

a 0.0l inch thick copper disc, The active area of the

disc is 1.0 inch in diameter.

B. Pulsing System

The Texas Neutron Generator is equipped with a dual
pulsing system which essentially eliminates any residual
beam between pulses. This system is composed of pre-ac-
celeration and post-acceleration systems operating simul-
taneously. The post and pre-acceleration systems are
similar in the electirostatic deflection of fhe beam. After
leaving the ion source; the beam is deflected by the pre-
acceleration system. The post~acceleration system deflects
the beam in the drift-tube section after it has been ac~-
celerated.

By using the dual pulsing system, an ion beam current
is supplies to the target with the following specificetions:

1., Pulse repetition rates over the continuous range

from lO-lOSpps, or continuous beam operation.
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2. Pulses 1 u sec. to lO4 M sec. duration; duty
cycle not to exceed 90 percent.

3. Pulse rise and decay times of approximately 0.5
u sec.

4, Peak pulse currents variable from O to 1 ma.

5. Residual beam between pulses approximately 0.0006
percent of the peak pulse current.

The above specifications were obtained from the Texas Nu-

clear Corporation instruction manual for pulsing systems (20).

C. 400-Channel Analyzer
The neutron flux as a function of time was recorded

by the RIDL Mcdel 34-12B transistorized 40C0O-channel analyzer
made by the Radiation Instrument Development Laboratory. The
time analyzer was designed with a channel selector to provide
50, 100, 200 or 400 total channels with any desired duration.
In its time mode it operates as though it were a large number
of single channel analyzers. Each address channel becomes
the équivalent of one single channel analyzer, with gross
counting of input pulses through a controlled time period in
each of the sequentially assigned channels. At the end of
the time interval, the address is advanced to the next se-
quential channel. This operating cycle is advanced through
the analyzer with a repetition rate determined by the product

of the channel width and the total number of channels selected.
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This means that the total time between pulses is constant,
with any error in time divided bylthe number of channels
that have been selected. The minimum cycle time for this
operation is 10 u sec. per channel.

There is provision for the temporary storage oi one
count during address advance, thus providing an effective
zero dead time when the probability of two or more pulses

within the 10 u sec. time interval is small.

D. Timer System

For the operation of the channel analyzer in its time
mode, an accessory time base control was used., This system
is a Radiation Instrﬁment Development Laboratory Model 88-901
Timer System. It consists of a set of iwo single size modular
units installed in a Designer Series Model 29-1 instrument
case and power supply. These units are a Model 54-6 Time
Base Generator and a Model 52-9 Time Mode System Controller,

The Model 54-6 Time Base Generator furnishes pulses to
the analyzer to provide channel advance. The timing provided
for a channel width is adjustable from 12.5 u sec. to 800 u
sec, The analyzer dead time is held to a constant 12.5 u
sec., for the shorter channel widths. A normal automatic
cycle consists of a‘period of dwell time, the same period of
dwell in the second channely, a channel advance, ete. This is

repeated until the number of channels selected as a subgroup
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in the analyzer has been used; then the analyzer signals
completion of one sequence and the Model 54-6 may stop auto-
matically or it may repeat the sequence, depending on settings
of its controls.

The Model 52-9 provides an optional sutoms: = pJsoyram-
ming control for Mcdel 34-12 and Model 54-6 combination, It
permits the analyzer, operating in the time mode, to be re=-
cycled through a preset number of store cycles and then to

be transferred to a read cycle for automatic readout or

printout.

E. Neutron Detection System

The components of this system are two BF3 proportional
counters, a preamplifier,; a linear amplifier and a Radiation
Instrument Development Laboratory scaler,

The first defector serves as a transverse detector in-
side the sphere. Tﬁis detector is a Miniature Model Mn i,
produced by the N. Wood Counter Laboratories. It is one-
fourth inch in diameter and one inch long. Its active length
is about 2.2 cm. The filling gas is BF3 with 96 percent
enrichment in Blo. The 'gas pressure is only known to lie
between 20 and 60 centimeters of mercury. For protection
against water, the detector was sealed inside a long lucite
light pipe tolbe held by a clamp mounted on a vertically

graduated aluminum holder.
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The second BF3 neutron detector was used as a monitor
for normalization purposes. The detector is about one-half
inch in diameter and four inches long. The active length
is about one inch. The detector was placed at a fixed po-
sition inside the shielded tank and coupled to & Radiation
Instrument Development Laboratory scaler,

At intervals during the series of measurements, the
detector and the time analyser were checked by a Chi-square

test for randomness and reproducibility.

F. Spherical Containers

The spherical geometry was made possible by placing
water inside round bottom pyrex flasks, Each flask was
chosen to have the narrerst possible neck so that it would
approximate a sphere when filled up to the neck with dis-
tilled water. The degree of sphericity of each flask was
checked by comparing its average radius, as determined by
volumetric methods, with the radius along the neck axis
measured from the center to the water level. The two values
were found to agree up to the first decimal.

The flasks used have the following average radii:

Flask number Average radius
1 17.025 + 0.005 cm.
2 14.412 + 0.005 cm.
3 10.830 + 0.004 cm.
4 8.968 + 0.003 cm.
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S 7.735 £ 0.003 cm.
6 $.348 £ 0.004 cm.
7 4.863 = 0.001 cm.
8 4,196 + 0.0005 cm.
9 3.553 £ 0.0003 cm.

The spheres were held in position by placing thnem on
cork rings lined with 20 mils cadmium to minimize scattering

by the cork material.

G. Shielding Facility and Detector Mount

Figure 3.5 is a photograph of the rectangulsr tank en-

(2}
.

closure us t0 prevent roome-return ncutrons from entering
the water system. The tank is supported by a wooden frame
17.95 x 17.5 x 19.0 inch and lined from inside to the outside
with a 40-mil cadmium sheet followed by a peraffin layer 1.25
inch thick, 20-mil cadmium laver then an cutermost layer of 2-
inch thick plexiglass. An opening Jjust large enough for the
target assembly was left in the middle of the side facing
the drift tube. The top of the assembly was covered by sim-
ilar layers which could be removed to insert the sphere and
allow the positioning of the traverse detector at a given
source-sphere distance.

The detector holder consists of an aluminum sliding
pridge, a graduated vertical stand and a plastic sliding

clamp for holding the detector. The bridge slides on alu-



Figure 3.5. Shielding facility and detector mount
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minum rails in a direction parallel to the axlis cf the drift
tube., The vertical stand is positioned at the micddle of the
sliding bridge and supports the detector clemp that can be
moved in a vertical direction. Thus the motion of the

detector is restricted to an axial and vertical directicn

with respect to the source.
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IV. EXPERIMENTAL PRGCCEDURE

To measure the flux distribution in a sphere along its
Z~direction (the neck axis) it was necessary to locate the
effective center of the detector. This was done by sliding
the detector into a cadmium sleeve with a transverse slit
0.2 cm wide. The position of the slit on the detector was
recorded and the detector was then placed inside a paraffin
block in a neutron field from Po-Be source. The count rate
at the given slit position was taken and the procedure was
repeated until the whole length of the detector was surveyed,
The diffefential curve obtained by this method and corrected
for the background is shown in Figure 4.1 together with the
corresponding integral curve. This integral curve repre-
sents the total count rate as a function ofxthe Cd=-uncovered
length of the detector.

The differential curve is seen to exhibit an asymmetric
Gaussian distribution. The position at the maximum of this
distribution corresponds to the effective center of the de-
tector; while the full width at half-maximum was considered
as the effective length of the detector.

The average radius of each sphere was determined ac~
cording to the following procedure. The sphere was cleaned
with chromic=-sulphuric acid mixture and rinsed with dis-

tilled watery alcohol, and then ether. After evaporating



Figure 4.1, Determination of the effective center of
the BF3 detector
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the ether in a dry air current and allowing the sphere to
reach equilibrium a{wfoom temperature,; water was addea
quantitatively to a level at which the tangent of the me-
niscus coincides with the spherical continuation at the
neck. The transferal of water was carried out using volu-
metric flasks and burettes standardized at 20°C. With the
volume of water in the sphere known,; the average radius
could be calculated.

Each sphere containing light water was symmetrically
bombarded at the equatorial plane by pulses of fast neutrons
(see Figure 4.2). These neutrons were produced by the D-~T
reaction as described earlier in chapter IiI. The ion beam
was constantly mainteined at 600 microamps. Pulsing was
carried out at a rate of 50 pulses per second, with a neu-
tron pulse width of 100 microsecond.

The counts from the detector were recorded and stored
in the 400~channel analyzer. One hundred channels were used
each having a 25-microsecond channel width and a dead time
of 12.5 microseconds. The monitor detector counts were re=-
corded on the monitor scaler that served as 2 basis to nor-
malize each run to a constant pulsed source exposure.

Measurements were taken at a detector position until
the monitor registered a preassigned total counts. This
ranged from 50,000 counts for the largest sphere to 120,000

counts for the smallest one. The monitor and the 400-channel



99

| BF3 detecior (\

Cadmium

N N N N NSNS N S S OSSOSO

|
|
[
1
|

Cd - Covered cork ring

Figure 4.2. Experimental arrangement of neutron source,
the spherical container and BF3 detector
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analyzer were then switched to the off position at the same
time. The data stored in the 400-channel were automatically
printed out by means of an accessory IBM typewriter. The
detector was moved verticaliy to a new position and the
procedure repeated until the accessible part of the z-axis

was surveyed. The data were then corrected for the dead

time and background.
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V. ANALYSIS OF DATA; RESULTS AND DISCUSSICN
A. Parameters of Pulsed Neutron Experiments

l. Determination of the decay constants for large

spheres

Consider M space points along the z-axis (see Figure 5.1).
Then at time t, (which corresponds to the midpoint of the kth

time channel), one has M measurements of the neutron flux

8

@(I‘mstk) = Z OAi(tk)jO( Bi’rm) (5-1)
i=

where
i+ )7 .
B = E%T(%;T]Q » 12 0sla2s5e0

8 Bg = The geometric buckling.

to
Il

Using only N terms in 5.1, one has M equations of conditions

and N + 1 unknown coefficients to determine

a(rl,tk) = Ao(tk)jo(BO,rl) + Al(tk)jo(Bl,rl) + ..

+ AN(tk)jO(BN,rl)

Q(IM,tk) =A0(tk)JO(BO’rM) + Al(tk)jo<Bler) + s e 00

+ At )35(Byazy) (5.2)

or, using matrix notation,



Figure 5.1. Flux maping along the z-axis of a sphere
with R, = 14,46 cm and an average radius
of 14.412 cm
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x(ty ) =W Al) {5.3)

where X is a M-dimensional column vectory A is an (N + 1)-
dimensional column vector and W is an Mx(N + 1) metrix. By
pre-multiplication of both sides of 5.3 by (WTW)°lWT, one
gets

Tyy=1,T

Al ) = (Ww) “wixit,) (5.4)

The harmonic amplitudes of the four largest spheres were
obtained from 5.4 by the method of least squares (32). Ex=
amples of these amplitudes are shown in Figure 5.2 and 5.3.
For amplitudes higher than A29 oscillations with time were
observed. They were found to be independent of the trunca-
tion order of 5.2. The occurrence cf these oscillations be-
came significant for small spheres. The data in Teble 5.1
illustrates this phenomenon for a sphere with an average
radius of 8.968 cm. From this table one observes the fun-
damental amplitude decreasing with time in an exponential
way free from any oscillation. The oscillations appear with
the first harmonic amplitude ahd increase with increasing
order of the harmonic.

There are two possible explanations for this unique
feature of the spherical geometry. The first is the fact
"that the zeroth-order spherical Bessel functions have am=
plitudes that behave like 1/r and the count rate per unit

length of a detector in a sphere is not symmetrically dis-



Figure 5.2, Relative decay of the fundamental mode
and the higher harmonics along the z-
axis of a sphere with Rav = 17.025 cm,
R, = 16.42 cm
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Figure 5.3. Relative decay of the fundamental and
the higher harmonics along the z-axis
of a sphere with R,y = 14.42 cm
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Table 5.1. Oscillatory behavior of higher harmonics for a
sphere with an average radius of 8.968 cm

ﬁﬂ;ﬂ?il Ao(t) Al(t) A2(t) Aa(t) A4(t)
4 67622.69 =6493,60 1638.28 -112.21 =181.5]
5 46423,29  -2718.35  396.64 85,40 -25.68
6 32480.63 ~1653.73 513,06 40,33 -91.37
7 22510,83 -801.09 449,31  =139.06 58.84
8 15956.35 -290.89 288,42 -82.03 -45.4}
9 11216.57 ~82.61 104.78 -5.16 25.82
10 8119.30 ~78.24 84.74 -23,30 -4,29
11 5736.41 ~96.42 205,52 -95.,96 5.28
12 4204, 54 -5.86 43.13 -37.42 25,49
13 3033.79 -84.15 48,65 -12.21 1.09
14 2166.71 ~24,69 21.98 -7.92 3.46
15 1538.44 -15.48 -2.81 9.98 -3.33
16 1133.28 -25.16 25,31 -9,82 -1.04
17 764,18 -23.82 31.06 -8,03 4,3]1

tributed about the effective center of the detect~

resulty, the detector does not behave like a point Goeuious
and would bey in a sphere,y, more sensitive to any variation
with time than it would be in any other geometry. For the
sake of illustration consider a sphere with an extrapolated
radius Rext and a slab with a extrapolated thickness Hext‘
_ Consider two similar detectors placed in positions as shown
in Figure 5.4, For detector number 2 there is a zero net

contribution from the two equal shaded areas on both sides
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.of its effective center. On the other hand, the net contri-
bution to detector number 1 1s non-zero since the two areszs
are not equal. This implies, therefore, that detector number
2 at that position behaves like a point detector; while num-
ber 1 retains the response of its effective lengtnh.

The other possible explanation is the inefficiency of
the expansion form given by 5.2. However, it will be found
later that the method of this section gives fundamental de-
cay constants compatible with both theoretical and experi-
mental results obtained by othexr authors.

In either case, it should not be teken for granted that
these oscillations are inherent in the character of the higher
amplitudes and, accordingly, that they describe the traveling
wave phenomenon discussed before. Rather,; there is a belief
that if the expansion 5.2 is proper; these oscillations are
- mere contaminations, the degiee of which quends on the order
of the amplitude and the size of the spheref In support of
this idea is the fact that it is possible to isclate a2 portion
of the oscillating harmonic amplitude that decays exponen-
tially with decay constant characteristic of the given harmonic.

The data forthe harmonic amplitudesy; or selected por-
tions thereof, were then analyzed by means of the "Cornell

Method" (10) assuming that, for the kth channel of width At:

Ai(tk) = A exp[-x;k(at)] (5.5)
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" where A is a constant and Xi is the presumed decay constant

of the ith harmonic. The method is summarized in that, for

n channels such that n/3 = b is an integer, xi is given by

2b (e ) 3b )
3 A (t -3 ’A. t J
i bat b ( g b o) .
T Aty - Z A (t,)
k=1 | 1K k=p+1 ' * K

The variance of the fundamental decay constant was cal-
culated by separately enalyzing successive portions of the
n-channel data utilizing four overlapping series of (n-3)
channels each {1-(n-3), 2-(n=2) and 4-n) or seven overlapping
series of {n-6) channels each (1-{n-6), ...s 7=-n). This
procedure takes into account thevrandom distribution of the
original counts about their best fit.

In several cases there were uncertainties in the radial
buckling along the z=axis as a result of the uncertainty in
the water level at the neck of the sphere. In these cases
more than one run was made with varying water level. The
points of each run were treated separately using the apove
procedure. |

Values of X for the four largest spheres are listed in
Table 5.2 together with both the average and the corresponding
radial bucklings along the z-axis. It should be noted that
the values of the fundamental decay constants are for the z-

direction unless it is otherwise stated. In calculating the
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Table 5.2. Fundamental decay constants for the largest spheres.
The space points used in the analysis are indicated
a b -1
a 2 b 2 A~ (sec. *)
Rav Bg,av Rz Bg,z Q
-2 5 11
(cm) (em™<) space space
points points
17.025 0.03270 16.420 0.0351 -—-- 5706 (for BZ )
% +
0.005 0.008 5910 (for B2)
14.412 0,04508 14.460 0,04500 64521207 64651200
+ +
0.005 0.006
14.412 0,04508 14.400 0.04504 6457+215 64621203
t +
0.005 0.05
10.830 0.07900 10.790 0.,07960 7825+157 -
* *
0.004 0.05
10.830 0,07900 10,900 0.07810 77981165
+
0.05
8.968 0,1137 8.97 0.1137 90691240 o
+ -
0.003 0.03
aRav and 82 are the average radius and the average

gyav

buckling respectively,.

b

the corresponding buckling.

R; is the radius measured along the z-axis and B  is

Gz
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the buckling, the P3 extrapolation distances (24) were used.
The decay constants for the higher harmonics are given
in Table 5.3. For the sake of comparisony the theoretical

values were calculated from

. . 4
Ng = hg + (i + 1)%1I08% - [(1 + D)%-1lcBy - (5.7)

where Bg’z is the radial buckling along the z-axis, D =
38692 cm? sec. L, V.5 = 4876 sec. + and C = 3618 cm” sec. L,

o“ao
These values are the Pl-—Ll values for the Nelkin's water (see

Table 2.12). The results are also listed in Table 5.3 from
which it is clear that both the theoretical and expeiimental

results agree with each other within 9%.

2. Determination of the decay constants for small spheres

The method used here to separate the fundamental mode
decay from the higher modes is based on the determination of
the optimum source distance and the waiting time. The source
distance is here defined as the distance between the target
and the facing point on the surface of the sphere (see Figure
4.2). The ratio of this distance to the average radius of
the given sphere will be referred to as the "normalized"
source distance, s. Figure 5.5 is a plot of the ratio of
the first and the second mode amplitude to the fundamental

as a function of this distance. The plot is for a sphere

h

with an average radius of 10.83 cm at the 8t time channel.
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Table 5.3. Decay constants of higher harmonics along the
z=axls of the corresponding sphere
52 A (sec.-l) Ao (sec.-l)
gsz ) N
-, Meas- Calcu- MM % Meas- Calcu- Moy o

(em ©) wured lated (measured) ured lated (measured)
0.0351 9425 10249 8.9 15324 16749 9.3
0.0450 11120 11723 5.4 18660 19951 6.9
0.0796 16020 16833 5.1 28500 30747 7.9
0.1137 20936 2173% 3.8 37813 40753 7.8

According to this Figures s is about 0.4, i.e.; double the

value reported for rectangular geometry {34). Data for other

channels essentially gave similar results.

The waiting time is defined as that time required for a

particular mode in a given sphere to decay to 1 percent of

the fundamental amplitude.

Use has been made of the data of

the previous section to plot the waiting time t, versus sphere

average radius Rav in Figure 5.6,

terpolated to lower values of tye

The curves were then in-

The Figure shows that for

radii less than 6 cm the waiting time is practically'zero.

Since the first mode can be eliminated to an appreciable ex-

tent by placing the detector at half of the extrapolated

radius, the waiting time would be mainly determined by the

second mode amplitude.

The data obtained by the waiting time method were then

fitted to the logarithmic difference of the counts in two
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successive time channels. If the number of counts in a

given channel is of the form

N, = A exp(~ At ) + BG (5.8)

where BG is the background and assumed to be constant, then

the difference between the aP channel and the (n + l)th
channel will not contain the background. The logarithm of

the difference is

In(N_ = N_,1) = -Agt ., *+ In{A(exp(-rgat)-1)) (5.9)

n

The result is a straight line with a slope of Aoe
The fundamental decay constants obtained by the above
procedure for five small spheres are tabulated in Table 5.4
' 2 Y . : .
where Bg,av Bg,z Bg. The large variance in this table
is probably due to the poor counting statistics for small

systems.,

3. Determination of the diffusion parameters

The usual fit of the experimental points to the function

Ao = £(B2)y i.e.;

_ 2 4 6
Ao = Voo * DoBg - cag + OB (5.10)

is done here according to the following procedure (19):

consider
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Table 5.4, Fundamental decay constant for small spherical
geometries
Radius® of the Buckling, -1
. An (sec. 7)
sphere; R (cm) Bg(cm 2) 0
7.735 + .003 0.1470 10633 + 155
6.348 + ,004 0.2206 12866 + 214
4.863 £ .001 0.3651 18239 + 362
4.196 £ .000% 0.4810 22101 + 460
3.553 + ,0003 0.6553 28050 + 810
an . -
R = Rav = RZ.
SW.A. =VS TW. + DY W.B2 +C o W,B
v 170 o“ao; 1 i%g © "iYg
i i i
. - 2 - o4 o =D
% hingO vogao f wiBg + DO ? WiBg + C § wibg
4 4 6 8
- = S oW . ]
;wingo VoZao ;v\ By + D, TWiB) +C i:wisg (5.11)
where Wi is the inverse of the variance of KO and £ denotes
i

the summation over all the experimental

points xo

and the cor-

responding bucklings. The coefficient matrix, A, is given by

\

2
T W.B
i *9

4
S W.B
i 9

S W.B
it

(5.12)
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The inverse elements S1n 8re obtained by taking the cofactor

of lm and dividing by the determinant det(A).

cofactor of 1lm
S = l,m=l,2,3
im det(A)

The inverse matrix is denoted by

_ .
S11 S12 513
-1 (e 1n
A = 551 S50 o3 {(5.13)
$31 532 $33
L J
= » . 2 . 4 3
VoZsio T 511 % Wikg + 815 ? Wikg By + 513 § Wikg By (5.14)
= ' A ' 2 4
Dy = s ? Wikg + spp § W.Ng Bg * S5q ? Vg Bg (5.15)
C = 5.0 T W.hn + Son T W.An B2 # 5., % W.A~ B~ (5.16)
31 ¢ Mi%0 32 % i*0 “g 33 ¢ "i%0 “g .
The corresponding standard deviaticns are given by:
diy 5 ) = [sy) £ W;ed/(N - 3)]% (5.17)
o“ao i
_ 2 . A
dp = [522 T Wiei/(N 3)] (5.18)
Q 1
g = [sq, 5 W.e2/(N - 3)75 (5.19)
C 38 ¢ Uit .

where N is the number of points used in the leastesquares fit
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and e; = Mg, (calculated) - Ao (observed)

It was felt that the use of Wi = 1 yields a more real-
istic set of parameters for these reasons. 1) Large ge-
ometries were not perfect spheres and the radius along the
z=axis differs from the average racius. This difference was
small for small geometries. 2) Large spheres had wide necks
- and the water levels at these necks were flat. Hence, there
is an uncertainty in the effective center of the sphere.

3) A weighing factor equal to the inverse of the statistical
variance of XO tends to weigh more heavily the experimental
points of large geometries,

The procedure was appliea to the data given in Table 5.1
and 5.4, For spheres with more than one run only values of
XO that made the variance of C a minimum were retained.

Table 5.5 summarizes the selected data for the best fit in
the given range of buckling. Values of XO for spheres where
there is a large difference between the average geometric
g,av and the radial buckling Bg ;

along the z-axis
9

buckling B
2 - p2 = p2
gsav Bgsz Bg'
The results of the fit for various ranges of bucklings are

are omitted from thié table. For the rest B

summarized in the following:

1. Fitting range from 0.04% to 0.365 cm-Q.
_ 3 -1
VoI, = (4,734 + 0.036) x 10° sec.
D = (3.8892 + 0.0442) x 10% cm?. secot
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Table 5.5. Experimental values of the fundamental decay con=-
stant that give the best fit in the indicated

buckling range

2 -2 -1
Bg(cm ) xo(sec. )
0.04504 6465
0.07960 7825
0.11370 G069
0.14700 10372
0.22060 13082
0.36510 18323
C = (4,590 + 1,034) x 10% en®. secTt
2. Fitting range from 0.0796 to 0.365 cm™2s
Vs = (4.767 + 0.068) x 10° sec:t
6%ao =
D, = (3.8570 * 0.0736) x 10% em?. secT!
C = (3,940 + 1.600) x 10° cn?, secTt
3. Fitting range from 0.045 to 0.2206 cm™2:
- 3 -1
Vozao = (4,718 + 0.065) x 10 sec.
D, = (3.9209 £ 0.1110) x 10% cm?. secl?
c = (5.840 + 4.039) x 10° cm®. sec?t

It is clear from these results thaty at the time Vozao and

Do are not sensitive to the range of fitting,y, C and its
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associated standard error show a large variation. This re-

flects the usual inherent difficulty of determining the cur-

vature of an unknown function defined by a small set of ex-

perimental points having iinite standard deviation,

Values of the microscopic absorption cross section for

hydrogen calculated on the basis of V0 = 220,000 cm. sec.

are as follows:

o? = 321 £ 2.46 mb s fitting range
c: = 323 * 4.7 mb y fitting range

.
3

1

0.045=00,365 cm

0.0796-0.365 cm

The diffusion length L i1s deduced from the parameters

by using the relation

where Bg is found for the stationary state by solving equa-

tion 5.10 with xo = 0, The result is

2 _ Do vozaoC
Loy Uy =5
o0“ao0 Do

(5.20)

When V_Z_ C Dg equation 5.20 should yield values of L

0 ao

2

2

directly comparable to values measured by stationary methods.

The values of L for two ranges of fitting are as follows:

L
L

2.887 * 0,024 cm , fitting range: 0,045 - 0,365 cm “.
2.860 + 0.030 cm , fitting range: 0.0796 - 0.365 cm “.

2
2
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Table 5.6 shows a comparison between these results and
those obtained by other investigators. The values of the
diffusion cooling constant obtained here are lower than that
cbtained by Lopez and Beyster (34) and higher than that ob-
tained by Dio (20). The relatively large standard deviation
associated with the present values of C are expected on the
basis of the inherent difficulty of determining the épherical
parameters and hence the expected uncertainty of buckling.
The values of the other parameters are in fair agreement with
those reported in Table 5.6.

The fit of the experimental data to the expression

- c84 (5.21)

= 2
XO =V ZEZ + DB T

0~a0 o T

was also tried, The values of B% were calculated according to

equation 2.52 by using

38570 cm? sec™?d (from the fit to Ag = f(B%))

Dy

2
9
1

3.34 cm~ (for Nelkin's water)

M)

Table 5,7 shows a comparison between the values of the param-
eters obtained from this fit and those from the previous one.
This table shows:
1., Within the experimental errors, the values of VoZio
and Do are essentially the same for the two fits.
2. There is improvement in the standard error of C,

3. The value of C from the new fit is as high as 1.5

times the value obtained from the other fit.



Table 5.6. Compariscn between neutron diffusion parameters for water at 22°C by
pulsed method.

Reference Do(cmzsec-l) C(cm4sec'l) og(mb) L{cm) Range of Bg

Present work 38892 + 442 4590 + 1034 321 + 2.46 2.887 + 0.024 0.045 - 0.365
. Present work 38570 + 736 3940 + 16C0 323 + 4.7 2.860 * 0.03 0.0766-0,.3651

Lopez and

Beyster (34) 36700 + 370 4852 + 800 --- 2.795 + 0.016 0.014 - C.018

Scott et

al. (46) 38500 *+ 800 --- 320 + 8.0 2.850 + 0.050 0.0C6 - 0.018

Antonov

et al. (1) 35000 £1000 4000 #* 1000 329 #10.0 2,700 + 0,100 0.09 =- 0.93

Dio (20) 35450 + 600 3700 * 700 328 + 6.0 2.715 % 0,06 0,093 - 0.87

[4AH
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Table 5.7. Comparison between the diffusion parameters ob-
tained from the fit to Ay = f(B%) and those from
Ao = f(Bg) for the range of buckling from 0,07%6

to 0.3651 cm™2

T YR
Ao = f(BT) o = £(By)
-1
V.E, (sec™ ™) 4770 + 68 4767 + 68
D, (cm?. sec™d) 38493 + 722 38570 + 736
C (em?. sec™d) 5861 + 1540 3940 + 1600

The speculation that follows from these observations is
that if the experimental values of the decay constant pre-
viously reported are fitted to equation 5.21 a reduction in
the uncertainty of the diffusion cooling constant might be
achieved,

The question to be imposed at this point is, why the
theoretical value of C obtained from the same expression
does not agree with the value of the fit. The explanation
for this is the fact that in calculating C its g factor given
according to equation 2.47 was taken to be 1.776. This value
is for two Laguerre polynomials, If higher polynomials could
have been taken into consideration,y, g would have been equal to
2.004, as reported by Perez and Uhrig (42), and one would have
obtained a theoretical value of C more close to the value of

the fit. Another reason for the discrepancy is the uncer=-



Figure 5.7. Least squares fit to data of the
fundamental decay constant in spherical
geometry
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tainty of M, and the low order of Py approximation used in
deriving B%. To correct for the last factor one should use
a more realistic model of the Boltzmann's equation like the
P3 approximation.

The disadvantage of the new fit, therefore, is the strong
link between theory and experiment and the fact that accurate
theoretical predictions are prerequisite for the experiment.
To put it more simply, the new fit requires accurate values of

M2 and this so far is obtained from theoretical models.

B. Extrapolétion Distances of
Pulsed Neutron Experiments

The effect of the uncertainty in the extrapolated end
points on the diffusion parameters extracted from pulsed
source experiments was emphasized in earlier work (24, 34)
and it was clear that more accurate measurements, especially
in spherical geometries, were required. Beckurts (2) stated
this need quite explicitly. The differences reported be-
tween extrapolated end points obtained by flux plotting in
pulsed and steady state experiments also called for further
investigation. Early pulse measurements in water at about
20°C (8, 18) gave values in the range 0.4 - 0.46 cm which
are well above the upper limits now indicated by steady state
values (in the range 0.32 - 0.3% cm) (56). To help in re-

soiving these inconsistancies further measurements have been
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cafried out according to the following procedure:

A computer program was written to:perform the least
squares fitting of the extrapolation distance data to equa-
tion 5.4. A trial value, d(o), of the extrapolation distancey
d, was first found graphically from the flux plots. Values
of d in the range from (d(o) - 0.5) to (d(o) + 0.5) cm were
tried with an increment of 0.05 cm. In each case the ampli-
tudes (Ai)’ the corresponding flux at the various space points
and the sum (S) of the squares of the residuals were computed.
The value of d corresponding to the minimum of the function
S = f(d) (see Figure 5.8) was as the best fitted value for
the given increment d. This vaiue was then taken for d(o)
and the procedure repeated with smaller increment until the
desired accuracy was reached.

To take into account the statistical fluctuation of d
with time, the method has been applied to data of five dif-
ferent spheres recorded at various times after the end of
the fast neutron burst. The results of fitting to three
harmonics are given in Table 5.8. A unit weighing factor
was used in the analjsis. The results generally show a
relatively large standard deviation of d at both short and
lohg time after the initiation of the neutron pulse., In
the former case the deviation could be accounted for by the
insufficiency of the three harmonic fit and the random dis~

tribution of the count rate about the best fit. The deviation
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Figure 5.8. Variation of the sum of the squares of the

2 residuals with the trial value of the ex~
trapolation distance for a sphere with R, =
14,46 cm




Table 5.8. Extrapolation distances for 3 harmonic fit
Number Number  Number Channel -4
of R of har- of space number AO Al A2 Sx10 d
sphere cm) monics points (cm)
1 16.42 3 11 18 18179 -1481 212 13.94  .400
3 11 24 5340 - 390 - 75 9.98 415
3 11 25 4126 93 -127 0.40 .380
2 14,46 3 11 14 22308 - 717 -152 16.43 .291
15 17894 - 506 -158 6.27 .333
16 13934 - 244 - 82 4,65 .431
20 5642 - 74 - 74 3.08 . 373
3 10.79 3 5 13 7070 62 -167 1.17 . 365
14 5311 27 - 11 1.37 . 338
15 3833 172 - 37 0.98 . 347
16 2986 148 - .8 1,20 . 350
4 8.97 3 5 10 8083 21 36 .054 ,340
11 5625 200 73 .36 .372
12 4124 201 - 43 .016 ,346
13 3015 - 28 20 .CO0S .348
14 2152 16 2.5 .023 .335
15 1496 92 - 48 .003 .350
5 7.735 3 5 5 37153 =-2030 -1436 2.44 . 352
7 13900 - 466 302 4,72 . 305
8 11494 -1306 3958 2.15 . 370

8¢1
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at longer times would be mainly due to the statistical fluc-
tuation of the count rate data.

To account for the effect of higher harmonics, the same
data were fitted to an increasing number of modes until con-
sistent results were obtained. These results are listed in
Table 5.9. The standard deviation shown is mainly statistical
in nature and does not account for the uncertainty in the
value of the radius along the z=-axis,

The boundary effect on d was not investigated., However,
the space distribution taken for each sphere was such that
points beyond a distance from the boundary of the order of
one cm were excluded from the analysis. Hence, the boundary
effect on the reported values is expected to be negligible,

'Recently Walker et al. (56) measured d from flux dis-
tribution in pulsed cubical systems. They obtained values

of

0.087 cm™2

0.38 + 0.04 cm for Bg

and

0.25 cm™2

0.35 + 0.02 cm for Bg

These values of d are in agreement with the present results.
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Table 5.9, Extrapolation distances for water in spherical
geometries at 229C, The number of space points
and harmonics used in the analysis are indicated

Number R7 R,y 82 . Number Number d(b2 Z)
of g:g of space of har- 9>
sphere (cm) (cm) (cm <) points monics {(cm)
1 16,420 17.025 0.034¢ 11 5 0.392
+ + +
0.08 0.005 0.05°
2 14.460 14,412 0.0449 11 5 0.396
+ * +
0.060 0.005 0.45
3 10,790 10.830 0.0794 5 4 0.352
+ + +
0.050 0.004 0.012
4 8.970 8.968 0.1129 5 4 0.347
T + *
0.030 0.003 0.013
5 7.740  7.735 0.1510° 5 3 0.338
+ + +
0.060 0.003 0.033

4The error does not include the uncertainty in the radius
along the z=-axis, It is mainly due to the statistical fluc-
tuation of the value of d with time,

bThis value was calculated using the value of R__ =
7.73%5 cm. av
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VI, SUMMARY

A study of neutron thermalization in a sphere of light
water was carried out both theoretically and experimentally.
The theoretical ¢spect of the problem was dealt with utiliz-
ing the P,-L; approximation. The space dependence was rep-
resented by the spherical Bessel functions of zeroth-order.
The use of this representation made it possible to avoid the
Fourier transform technique which strictly applies to infi-
nite meéia. The study employed values of the thermalization
parameter, M2, corresponding to the scattering kernels of
Mass=-1l, Mass-18, Brown & St.John and Nelkin. When the time

decay constant, hy was plotted versus the spherical Bessel

2

function variable, 52, two limiting values of B™ were ob-

tained. One was 82 sy below which all decay constants

1 smax
were real and the other one was Bg,max’ beyond which no real
decay constants existed.

The curve describing the fundamental time eigenvalue
in the (A, B2) plane had a negative curvature at the origin
for all values of M2 investigated. The amplitude of the
curvature increased with decreasing value of M2. For Nel-
kin's water, the curvature was in agreement with the experi-
mental results and in disagreement with the findings of

Travelli and Calame (52) obtained from a 4-group treatment

in the P) approximation. These authors found a positive
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curvature for the Radkowsky kernel.

The sensitivity to M, was also observed in the limiting
value, xlim’ of the fundamental decay constant obtained graph=-
ically from the (\, 82) plots, The values obtained were
higher than the limit reported by Corngold and Michael (12)
and lower than that obtained by Purohit et al. (45) for the
Doppler corrected kernel. Nim for the Mass-1 kernel was in
excellent agreement with that obtained by Ohanian and Daitch
(41). |

The expansion of the fundamental eigenvalue, KO’ in
power series of B2 was shown to have a radius of convergence
that covers all the buckling ranges available to experiments.
On the other hand, kl (the first eigenvalue) had a very small
radius of convergence and its expansion in power series of
82 was shown to be questionable even for large geometries.

The "buckling-dependence" of the diffusion cooling co-
efficient in the Pl approximation was suppressed by expanding
the fundamental decay constant in power series of B%, a slowly
varying function of Bz. The difference between B% and 82 was
correlated to the difference between the Pl and the diffusion
approximation in the time dependent case. Values of the de-
cay constant obtained from the function Ay = f(B%) differed
by no more than fractions of percent from the corresponding
values obtained from the original polynomial given by 2,37,

The thermalization time constant was obtained from the
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limiting case of the transcendental quadratic equation in

Kl’ as 82 = zao =0, Two cases were considered. A case in
which the transport mean free path varied as JE and another
in which xtr was constant. The values of tth for the latter
case were about 4 times as large as the corresponding values
for the energy dependent case. The result for Nelkin's
scattering kernel was in good agreement with the experimental
result reported by Méller and Sjdstrand (37).

The concept of buckling for spherical water systems was
investigated and found to be valid as long as the fundamental
decay constant, KO’ is less than about twenty thousands times
the thermalization parameter, M2. This concept broke down
for the mass-18 kernel at values‘of B2 greater than 0.5 cm'2.

The neutron spectrum of the asymptotic distribution pre-
sented in this work exhibited the diffusion cooling phenomenon
shown in the results reported by Clendenen (9) for the high
order Py approximation.

The space transient near the boundary and its effect on
the extrapolation distance were studied. The transient effect
was negligible beyond a distance from the boundary of the
order of 0.5 cm. At the boundary the effect was determined
by the neutron spectra,

A calculation of the extrapolation distances for spheri-
cal geometry showed that the Marshak's boundary condition used

for the outer-boundary is not suited for this type of con-
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figuration and that it is desirable to work the problem in
the “"equivalent" slab geometry that suited the indicated
boundary condition for the given order of the PN apprbxi-
mation,

Pulsing data for nine spheres with a buckling range of
0.0351 - 0.6553 cm”2 were obtained and analyzed by the method
of least squares (32). The amplitudes of higher harmonics
showed with time an oscillatory behavior. A possible ex-
planation for this phenomenon was offered.

The data for the fundamental decay constant were fitted
to two functions. Aq = f(Bg) and Ay = f(B%). Within the
experimental errors, values of the absorption cross section
and the diffusion coefficient Do obtained from the two fits
were almost identical. On the other handy the diffusion
cooling coefficient C obtained from the first fit was much
lower than that of the second fit. The new fit gave a rel-
atively improved standard deviation of C.

The extrapolation distances for five spheres were ob-
tained by a least squares fit to the flux distribution in
the pulsed experiments. The effect of higher harmonic con-
tamination on the magnitude of the extrapolation length and
the rule of the flux variation with time on the fitted values

were considered in the analysis.
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VII, CONCLUSIONS

Based on a comparison between the theoretical considera=-
tions of this work and that of Travelli and Calame (52),
it is concluded that the Pi=Ly approximation, with a
realistic scattering kernel for light water, predicts
the time behavior in pulsed neutron experiments more
accurately than few-groups Pl approximation and that

the diffusion cooling phenomenon is best exhibited in
the continuoué energy representation as was anticipated
by Daitch and Ebeoglu (15%).

In case of light water, the usual expansion of the fun-
damental decay constant is justifiable on the basis that
the value of buckling beyond which a travelling wave

2 (

phenomenon occurs is of the order of 6 cm < (or even

higher (15)). This value covers all the experimental
ranges of interegt; The same is not equally applicable
to the first eigenvalue, a matter that leads to doubting
the method of Purohit (43) in expénding this constant in
a power series of B2. —

Although the diffusion and the Pl-Ll approximations might
be identical in the time-independent case, they are dif=-
ferent from each other when the time dependence is re=-

tained., This difference can be correlated with that one

between the geometric buckling and the transport buckling
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introduced in this thesis.

The concept of buckling for a spherical geometry in the

energy dependent case is valid as long as the asymptotic

region is well established. This is not possible for

small systems described by the Mass-18 gas kernel,

The sharp variation of the effective buckling and the

effective average energy of neutrons in pulsed spheres

is due to the diffusion cooling phenomenon in finite

media of light water as a result of the energy dependence

of the transport mean free path.

For reliable values of the extrapolation distances ob-

tained from pulsed spheres one must teke into account:

i. The boundary effect due to the transient distri-

bution. The effect of this transient iz negli-
gible for space points far from the boundary by

distances of the order of 0.5 cm.

ii. The statistical variation of the extrapolation
distance with time. This could lead to laxge
errors especially at long times after the initiae
tion of the neutron pulse.

iii, Effect of higher harmonics which could be serious

for large geometries.
In additiony; the number and distribution of the space
points used in the analysis.

A BF, detector at a zero of 2 given higher harmonic might
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behave as a point detector in multidimensional systems;
while in a sphere it does not behave the same. This is
because the count rate per unit length varies along the
effective length in case of spherical geomefry. As a
result, a detector in a sphere is very sensitive to any
fluctuation that might occur with time in the flux dis-
tribution. A unique feature that has been cbserved in
pulsed spheres is the oscillatory behavior ¢f the ampli-
tudes of higher harmonics with time. The oscillations
contribute to the difficulty in‘determining higher decay
constants., Another inherent difficulty with these experi-
ments 1s the determination of the effective center of the
sphere. This results mainly from the neck effect, The
water level at the neck is flat especially if the neck is
wide. Hence, the upper and lower halves of the sphere are
not symmetric. The experiments also depeﬁd strongly on
the exact determination of the effective center of the
detector. Any uncertainty in finding its location is re-
flected in the radial buckling. In general, & successful
experiment in spherical geometry reguires:
i, Exact location of the effective center.
ii., A small BF3 detector.
iii, A sphere for which the average radius is very close to
the radius as measured along the z-axis. This, in turn,

depends on the degree of the sphericity of the body and
the diameter of the neck. -
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X. APPENDIX

The computation in the theoretical chapter employed
values of the total scattering cross section and the average
of the scatte£ing cosine obtained by McMurry et al. (36).
Table A.l1 and A.2 show a comparison between values for the
McMurry=-Russell model and those obtained from different

sources.,

Table A,1, Comparison of total scattering cross sections.?

(bo(E)/molecule)
E(ev)  Observed® MR® Nd N-KY®  KY® et
0.002 200 202 210 204 206 212
0.005 164 166 165 174 165 143
0.025 107 107 106 105 105 86.2
0.050 83 82 77.7 79 82 76.7
0.100 70.1 67.3 69.1 70 72 67.1
0.150 63.1 61.0 62. 3 64 64 62.4

®The data were compiled by McMurry et al. (36).

Ppata for E < 0.1 ev are from Hughes and Schwartz (28).
For E > 0.1 ev, data are from Beyster et al. (3).

MR refers to calculations by McMurry, Russell and
Brugger (36).

dN refers to Nelkin's model.

®N-KY and KY refer to calculations by Koppel and Young
(31) who used the Nelkin model and a model that corrects for
the vibrational anisotropy.

fFG refers to the free gas model.
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Table A.2. Comparisona of average scattering cosines (ﬁ)

E(ev)  Observed MR® N N-KY®  KYP FG©

0.002 --- 0.017  0.035 0.023 ---  0.101
0.005 .  0.033 0.048  0.071  0.060 ---  0.145
0.025 0.140 0.180  0.190 0.180  0.160 0,258
0.050 . 0.220 0.270  0.280 0.260  0.240  0.316
0.100 0.290 0.350  0.350 0.320  0.300 O.365
0.150 0.340 0.380  0.380 0.350  0.340  0.392

3MR refers to McMurry, Russell, and Brugger (36) who
compiled the data in this table.

bN-KY and KY refer to calculations by Koppel and Young
(31) who used the Nelkin model and a model that corrects for

the vibrational anisotropy.

“FG refers to the free gas model.

From Table A.ly it is seen that the N and MR calcuiations
agree well with the experimental data. The MR model uses high-
er effective massesy and this accounts for the ﬁ values being
smaller than those of the N model.

The absorption cross section used in calculating the de-

cay constant was obtained by Gelbard and Davis (24) for the

Radkowsky kernel. In the quoted paper

_ -1 .
vozao = 4876 sec.~ (for the P3 calculation).
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